资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有( )个
A.4 B.3 C.2 D.1
2.如果,、分别对应、,且,那么下列等式一定成立的是( )
A. B.的面积:的面积
C.的度数:的度数 D.的周长:的周长
3.下列抛物线中,与抛物线y=-3x2+1的形状、开口方向完全相同,且顶点坐标为(-1,2)的是( )
A.y=-3(x+1)2+2 B.y=-3(x-2)2+2 C.y=-(3x+1)2+2 D.y=-(3x-1)2+2
4.如图,在平面直角坐标系中,与轴相切于点,为的直径,点在函数的图象上,若的面积为,则的值为( )
A.5 B. C.10 D.15
5.关于的方程的根的情况,正确的是( ).
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
6.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为( )
A. B. C. D.
7.在中,,另一个和它相似的三角形最长的边是,则这个三角形最短的边是( )
A. B. C. D.
8.下列图形中,既是轴对称图形又是中心对称图形的共有( )
A.1个 B.2个 C.3个 D.4个
9.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )
A. B.
C. D.
10.小明沿着坡度为1:2的山坡向上走了10m,则他升高了( )
A.5m B.2m C.5m D.10m
二、填空题(每小题3分,共24分)
11.如图,在中,,,点在上,且,则______.______.
12.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.
13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=6cm,则线段BC=____cm.
14.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于____________.
15.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
16.在中,,,,则的长是__________.
17.关于的方程有两个不相等的实数根,那么的取值范围是__________.
18.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.
三、解答题(共66分)
19.(10分)在一个不透明的袋子里有1个红球,1个黄球和个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求的值.
20.(6分)为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.
21.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
22.(8分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件)
销售单价m(元/件)
(1)请计算第几天该商品单价为25元/件?
(2)求网店第几天销售额为792元?
(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?
23.(8分)新区一中为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查.用“"表示小说类书籍,“”表示文学类书籍,“”表示传记类书籍,“”表示艺术类书籍.根据问卷调查统计资料绘制了如下两副
不完整的统计图.
请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了 名学生,请补全条形统计图;
(2)在接受问卷调查的学生中,喜欢“”的人中有2名是女生,喜欢“”的人中有2名是女生,现分别从喜欢这两类书籍的学生中各选1名进行读书心得交流,请用画树状图或列表法求出刚好选中2名是一男一女的概率.
24.(8分)已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).
(1)求这个二次函数图象与x轴的交点坐标;
(2)当y>0时,直接写出自变量x的取值范围.
25.(10分)已知一次函数的图象与二次函数的图象相交于和,点是线段上的动点(不与重合),过点作轴,与二次函数的图象交于点.
(1)求的值;
(2)求线段长的最大值;
(3)当为的等腰直角三角形时,求出此时点的坐标.
26.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
参考答案
一、选择题(每小题3分,共30分)
1、B
【解析】根据中心对称图形的概念判断即可.
【详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.
2、D
【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.
【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.
故选:D
【点睛】
考核知识点:相似三角形性质.理解基本性质是关键.
3、A
【解析】由条件可设出抛物线的顶点式,再由已知可确定出其二次项系数,则可求得抛物线解析式.
【详解】∵抛物线顶点坐标为(﹣1,1),∴可设抛物线解析式为y=a(x+1)1+1.
∵与抛物线y=﹣3x1+1的形状、开口方向完全相同,∴a=﹣3,∴所求抛物线解析式为y=﹣3(x+1)1+1.
故选A.
【点睛】
本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)1+k中,顶点坐标为(h,k),对称轴为x=h.
4、C
【分析】首先设点C坐标为,根据反比例函数的性质得出,然后利用圆的切线性质和三角形OAB面积构建等式,即可得解.
【详解】设点C坐标为,则
∵与轴相切于点,
∴CB⊥OB
∵的面积为
∴,即
∵为的直径
∴BC=2AB
∴
故选:C.
【点睛】
此题主要考查圆的切线性质以及反比例函数的性质,熟练掌握,即可解题.
5、A
【分析】根据一元二次方程根的判别式,即可得到方程根的情况.
【详解】解:∵,
∴,
∴原方程有两个不相等的实数根;
故选择:A.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.
6、B
【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,根据概率公式即可求解.
【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为.
故选:B.
【点睛】
本题考查了概率的计算,掌握概率计算公式是解题关键.
7、B
【分析】设另一个三角形最短的一边是x,根据相似三角形对应边成比例即可得出结论.
【详解】设另一个三角形最短的一边是x,
∵△ABC中,AB=12,BC=1,CA=24,另一个和它相似的三角形最长的一边是36,
∴,
解得x=1.
故选:C.
【点睛】
本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.
8、B
【分析】根据中心对称图形和轴对称图形的概念即可得出答案.
【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.
故选B.
考点:1.中心对称图形;2.轴对称图形.
9、D
【分析】根据旋转的定义进行分析即可解答
【详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,
分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.
故选D.
【点睛】
本题考查了图纸旋转的性质,熟练掌握是解题的关键.
10、B
【详解】解:由题意得:BC:AB=1:2,设BC=x,AB=2x,
则AC===x=10,
解得:x=2.
故选B.
二、填空题(每小题3分,共24分)
11、
【分析】在Rt△ABC中,根据,可求得AC的长;在Rt△ACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果.
【详解】解:在Rt△ABC中,
∵,
∴AC=BC=1.
设CD=x,则BD=8-x=AD,
在Rt△ACD中,由勾股定理得,
x2+12=(8-x)2,解得x=2.
∴CD=2,AD=5,
∴.
故答案为:1;.
【点睛】
本题考查解直角三角形,掌握相关概念是解题的关键.
12、4
【解析】试题解析:∵ 可
∴设DC=3x,BD=5x,
又∵MN是线段AB的垂直平分线,
∴AD=DB=5x,
又∵AC=8cm,
∴3x+5x=8,
解得,x=1,
在Rt△BDC中,CD=3cm,DB=5cm,
故答案为:4cm.
13、18
【分析】根据已知图形构造相似三角形,进而得出,即可求得答案.
【详解】如图所示:过点A作平行线的垂线,交点分别为D、E,
可得:
,
∴,
即,
解得:,
∴,
故答案为:.
【点睛】
本题主要考查了相似三角形的应用,根据题意得出是解答本题的关键.
14、2
【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.
【详解】∵四边形ABCD是正方形,∴AB=BC=CD=1.
∵△ABE绕点A逆时针旋转后得到△ADF,∴DF=BE=1,∴CF=CD+DF=1+1=4,CE=BC﹣BE=1﹣1=2.
在Rt△EFC中,EF.
【点睛】
本题考查旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.
15、40°
【解析】:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
16、
【分析】根据cosA=可求得AB的长.
【详解】解:由题意得,cosA=,∴cos45°=,解得AB=.
故答案为:.
【点睛】
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
17、且
【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
18、
【分析】根据“总售价=每棵的售价×棵数”列方程即可.
【详解】解:根据题意可得:
故答案为:.
【点睛】
此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.
三、解答题(共66分)
19、2
【分析】根据“摸到白球的频率稳定于0.5左右”利用概率公式列方程计算可得;
【详解】解:根据题意,得,
解得
答:的值是2.
【点睛】
本题考查了用频率估计概率和概率公式,掌握概率公式是解题的关键.
20、100米
【分析】延长PQ交直线AB于点M,连接AQ,设PM的长为x米,利用锐角三角函数即可求出x,再利用锐角三角函数即可求出QM,从而求出结论.
【详解】解:延长PQ交直线AB于点M,连接AQ,如图所示:
则∠PMA=90°,
设PM的长为x米,
在RtPAM中,∠PAM=45°,
∴AM=PM=x米,
∴BM=x﹣100(米),
在RtPBM中,
∵tan∠PBM,
∴tan60°,
解得:x=50(3),
在RtQAM中,
∵tan∠QAM,
∴QM=AM•tan∠QAM=50(3)×tan30°=50()(米),
∴PQ=PM﹣QM=100(米)
答:信号塔PQ的高度约为100米.
【点睛】
此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.
21、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【分析】(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
22、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.
【分析】(1)将m=25代入m=20+x,求得x即可;
(2)令,解得方程即可;
(3)根据“总利润=单件利润×销售量”可得函数解析式,将所得函数解析式配方成顶点式后,根据二次函数的性质即可得.
【详解】解:(1)当时,,
解得:,
所以第10天时该商品的销售单价为25元/件;
(2)根据题意,列方程为:
,解得(舍去)
答:网店第26天销售额为792元.
(3)
;
(4)
,
∴当时,y最大=,
答:这30天中第15天获得的利润最大,最大利润是元
【点睛】
本题考查二次函数的应用等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.
23、(1)20;补全图形见解析;(2).
【分析】(1)根据D的人数除以占的百分比得到调查的总学生数,进而求出C的人数,补全条形统计图即可;;
(2)列表可得总的情况数,找出刚好选中一男一女的情况,即可求出所求的概率.
【详解】(1)20;补全条形统计图如下:
(2)在喜欢”的人中2名女生、1名男生分别记作、、,在喜欢“”的人中2名女生、2名男生分别记作,
列表如下:
由表知,共有12种等可能的结果,其中选中一男一女的结果有6种,(刚好选中2名是一男一女).
【点睛】
此题考查了列表法与树状图法,条形统计图,以及扇形统计图,用到的知识点为:概率=所求情况数与总情况数之比.
24、(1)交点坐标为(2,0)和(1,0);(2)2<x<1
【分析】(1)把点(﹣2,﹣40)和点(6,1)代入二次函数解析式得到关于a和b的方程组,解方程组求得a和b的值,可确定出二次函数解析式,令y=0,解方程即可;
(2)当y>0时,即二次函数图象在x轴上方的部分对应的x的取值范围,据此即可得结论.
【详解】(1)由题意,把点(﹣2,﹣40)和点(6,1)代入二次函数解析式,
得,
解得:,
所以这个二次函数的解析式为:,
当y=0时,,
解之得:,
∴这个二次函数图象与x轴的交点坐标为(2,0)和(1,0);
(2)当y>0时,直接写出自变量x的取值范围是2<x<1.
【点睛】
本题考查待定系数法求解析式、二次函数图象与x轴的交点,解题的关键是熟练掌握待定系数法求解析式.
25、(1)1,3;(2)最大值为;(3)
【分析】(1)将点分别代入一次函数解析式可求得b的值,再将点A的坐标代入二次函数可求出a的值;
(2)设,则,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PC的长关于m的二次函数,根据二次函数的性质可得答案;
(3)同(2)设出点P,C的坐标,根据题意可用含m的式子表示出AC,PC的长,根据AC=PC可得关于m的方程,求得m的值,进而求出点P的坐标.
【详解】解:(1)∵在直线上,
∴,
∴.
又∵在拋物线上,
∴,
解得.
(2)设,则,
∴,
∴当时,有最大值,最大值为.
(3)如图,∵为的等腰三角形且轴,
∴连接,轴,
∵,
∴,
.
∵,
∴,
化简,得,
解得,(不合题意,舍去).
当时,,
∴此时点的坐标为.
【点睛】
本题是二次函数综合题,主要考查了求待定系数法求函数解析式,二次函数的最值以及等腰三角形的性质等知识,利用平行于y轴的直线上两点间的距离建立出二次函数模型求出最值是解题关键.
26、(1)见解析;(2)见解析.
【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
展开阅读全文