收藏 分销(赏)

高中数学选修基础知识点.doc

上传人:a199****6536 文档编号:2339329 上传时间:2024-05-28 格式:DOC 页数:9 大小:1.14MB
下载 相关 举报
高中数学选修基础知识点.doc_第1页
第1页 / 共9页
高中数学选修基础知识点.doc_第2页
第2页 / 共9页
高中数学选修基础知识点.doc_第3页
第3页 / 共9页
高中数学选修基础知识点.doc_第4页
第4页 / 共9页
高中数学选修基础知识点.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、高二数学选修21第二章:圆锥曲线知识点:11、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化建立适当的直角坐标系;设动点及其他的点;找出满足限制条件的等式;将点的坐标代入等式;化简方程,并验证(查漏除杂)。12、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。13、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距,a最大对称性关于轴、轴对称,关于原点中心对称离心率准线方程14、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则。15、平面内与两个定

2、点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距。16、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距,c最大对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程17、实轴和虚轴等长的双曲线称为等轴双曲线。18、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则。18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线

3、的“通径”,即20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围考点:1、圆锥曲线方程的求解 2、直线与圆锥曲线综合性问题 3、圆锥曲线的离心率问题典型例题:1设双曲线的左准线与两条渐近线交于 两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为A B C D,2设椭圆的左、右焦点分别为F1,F2。点满足 ()求椭圆的离心率; ()设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。第三章:空间向量知识

4、点:1、空间向量的概念:在空间,具有大小和方向的量称为空间向量向量可用一条有向线段来表示有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向向量的大小称为向量的模(或长度),记作模(或长度)为的向量称为零向量;模为的向量称为单位向量与向量长度相等且方向相反的向量称为的相反向量,记作方向相同且模相等的向量称为相等向量2、空间向量的加法和减法:求两个向量和的运算称为向量的加法,它遵循平行四边形法则即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则求两个向量差的运算称为向量的减法,它遵循三角形法则即:在空间任

5、取一点,作,则3、实数与空间向量的乘积是一个向量,称为向量的数乘运算当时,与方向相同;当时,与方向相反;当时,为零向量,记为的长度是的长度的倍4、设,为实数,是空间任意两个向量,则数乘运算满足分配律及结合律分配律:;结合律:5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线6、向量共线的充要条件:对于空间任意两个向量,的充要条件是存在实数,使7、平行于同一个平面的向量称为共面向量8、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,使;或对空间任一定点,有;或若四点,共面,则9、已知两个非零向量和,在空间任取一点,作,则

6、称为向量,的夹角,记作两个向量夹角的取值范围是:10、对于两个非零向量和,若,则向量,互相垂直,记作11、已知两个非零向量和,则称为,的数量积,记作即零向量与任何向量的数量积为12、等于的长度与在的方向上的投影的乘积13若,为非零向量,为单位向量,则有;,;14量数乘积的运算律:;15、空间向量基本定理:若三个向量,不共面,则对空间任一向量,存在实数组,使得16、三个向量,不共面,则所有空间向量组成的集合是这个集合可看作是由向量,生成的,称为空间的一个基底,称为基向量空间任意三个不共面的向量都可以构成空间的一个基底17、设,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,的公

7、共起点为原点,分别以,的方向为轴,轴,轴的正方向建立空间直角坐标系则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量存在有序实数组,使得把,称作向量在单位正交基底,下的坐标,记作此时,向量的坐标是点在空间直角坐标系中的坐标18、设,则 若、为非零向量,则若,则,则19、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表示向量称为点的位置向量20、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以确定直线的位置,还可以具体表示出直线上的任意一点21、空间中平面的位

8、置可以由内的两条相交直线来确定设这两条相交直线相交于点,它们的方向向量分别为,为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置22、直线垂直,取直线的方向向量,则向量称为平面的法向量23、若空间不重合两条直线,的方向向量分别为,则,24、若直线的方向向量为,平面的法向量为,且,则,25、若空间不重合的两个平面,的法向量分别为,则,26、设异面直线,的夹角为,方向向量为,其夹角为,则有27、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有28、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小若二面角的平面角为,则29、点

9、与点之间的距离可以转化为两点对应向量的模计算30、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为31、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为考点:1、利用空间向量证明线线平行、线线垂直 2、利用空间向量证明线面平行、线面垂直、面面平行、面面垂直 3、利用空间向量证明线线角、线面角、面面角问题典型例题:1已知正方体ABCDA1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为 。2在如图所示的几何体中,四边形ABCD为平行四边形,ACB=,平面,EF,.=.()若是线段的中点,求证:平面;()若=,求二面角-的大小3.如图,在五棱锥PABCDE中,平面ABCDE,AB/CD,AC/ED,AE/BC,三角形PAB是等腰三角形。 ()求证:平面PCD 平面PAC; ()求直线PB与平面PCD所成角的大小; ()求四棱锥PACDE的体积。9 / 9

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服