1、周周练(5) 答案1. 【解析】(1)证明:,数列为等差数列(2)解:假设数列中存在三项,它们可以够成等差数列;不妨设为第项,由得,又为偶数,为奇数故不存在这样的三项,满足条件(3)由(2)得等式,可化为,即,当时,当时,当时,经验算时等号成立满足等式的所有2. 【解】(1)设等差数列的公差为d. 由已知得 2分即解得4分.故. 6分(2)由(1)知.要使成等差数列,必须,即,8分.整理得, 11分因为m,t为正整数,所以t只能取2,3,5.当时,;当时,;当时,.故存在正整数t,使得成等差数列. 15分3. 解:(1)由已知,得由,得因a,b都为大于1的正整数,故a2又,故b3 2分再由,得
2、由,故,即由b3,故,解得 4分于是,根据,可得6分(2)由,对于任意的,均存在,使得,则又,由数的整除性,得b是5的约数故,b=5所以b=5时,存在正自然数满足题意9分(3)设数列中,成等比数列,由,得化简,得 () 11分当时,时,等式()成立,而,不成立 12分当时,时,等式()成立13分当时,这与b3矛盾这时等式()不成立14分综上所述,当时,不存在连续三项成等比数列;当时,数列中的第二、三、四项成等比数列,这三项依次是18,30,5016分4. (1)由 可得又(2)对任意,得将代入,可得即又因此是等比数列.(3)由(2)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,