1、高一物理力的合成与分解基础知识讲解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力 定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。合力与分力的关系。a.合力与分力是一种等效替代的
2、关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。2.力的合成定义:求几个力的合力的过程叫做力的合成。说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。3.平行四边形定则内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。说明:平行四边形定则是矢量运算的基本法则。应用平行四边形定则求合力
3、的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。 要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。 2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。 说明:平行四边
4、形定则只适用于共点力的合成,对非共点力的合成不适用。今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。3.合力与分力的大小关系: 由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。(1)合力F的范围:F1-F2FF1+F2。 两分力同向时,合力F最大,F=F1+F2。 两分力反向时,合力F最小,F=F1-F2。 两分力有一夹角时,如图甲所示,在平行四边形OABC中,将F2平移到F1末端,则F1、F2、F围成一个闭合三角形。如图乙所示,由三角形知识可知; F1-F2FF1+F2。综合以上三种情况可知: F1-F2FF1+F2。 两分力夹角越大,合力就越小
5、。 合力可能大于某一分力,也可能小于任一分力. 要点三、力的分解要点诠释:1.分力:几个力,如果它们产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力注意:几个分力与原来那个力是等效的,它们可以相互替代,并非同时存在2.力的分解:求一个已知力的分力叫力的分解3.力的分解定则:平行四边形定则,力的分解是力的合成的逆运算两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示)即同一个力F可以分解成无数对大小、方向不同的分力要点四、实际分解力的方法要点诠释:1.按效果进行分解 在实际分解中,常将一个力沿着该力的两
6、个效果方向进行分解,效果分解法的方法步骤: 画出已知力的示意图; 根据此力产生的两个效果确定出分力的方向;以该力为对角线作出两个分力方向的平行四边形,即作出两个分力2.利用平行四边形定则求分力的方法 作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向 计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题因此其解题的基本思路可表示为3.力按作用效
7、果分解的几个典型实例实例分析地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1;二是使物体压紧斜面的分力F2,质量为m的光滑小球被竖直挡板挡住而静止于斜面上时其重力产生两个效果:一是使球压紧板的分力F1;二是使球压紧斜面的分力F2,质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1;二是使球拉紧悬线的分力F2,A、B两点位于同一平面上,质量为m的物体由AO、BO两线拉住,其重力产生两个
8、效果:一是使物体拉紧AO线的分力F2;二是使物体拉紧BO线的分力质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是拉伸BC的分力F2,质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2,要点五、力的分解中定解条件要点诠释: 将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件 (1)已知合力(大小、方向)和两个分力的方向,则两个
9、分力有唯一确定的值如图甲所示,要求把已知力F分解成沿OA、OB方向的两个分力,可从F的矢(箭头)端作OA、OB的平行线,画出力的平行四边形得两个分力F1、F2(2)已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值如图乙所示,已知F(合力),分力F1,则连接F和F1的矢端,即可作出力的平行四边形得另一个分力F2(3)已知合力(大小、方向)和两分力大小,则两分力有两组解,如图所示,分别以O点和F的矢端为圆心,以F1、F2大小为半径作圆,两圆交于两点,作出三角形如图(4)已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值如图所示,假设F1与
10、F的夹角为,分析方法如下: 以F的尾端为圆心,以F2的大小为半径画圆,看圆与F1的交点即可确定解释的情形 当F2Fsin时,圆(如圆)与F1无交点,无解; 当F2Fsin时,圆(如圆)与F1有一交点,故有唯解,且F2最小; 当FsinF2F时,圆(如圆)与F1有两交点,有两解; 当F2F时,圆(如圆)与F1有一交点,有唯解要点六、实验验证力的平行四边形定则要点诠释:1.实验目的:验证力的平行四边形定则2.实验器材:方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉3.实验原理:结点受三个共点力作用处于平衡状态,则F1、F2之合力必与F3平衡,改用一个拉力F使结
11、点仍到O,则F必与F1、F2的合力等效,与F3平衡,以F1、F2为邻边作平行四边形求出合力F,比较F与F的大小和方向,以验证力合成时的平行四边形定则。4.实验步骤:(1)用图钉把白纸钉在方木板上。(2)把方木板平放在桌面上,用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上细绳套。(3)用两只弹簧秤分别钩住细绳套,互成角度的拉橡皮条,使橡皮条伸长到某一位置O(如图所示)用铅笔描下O点的位置和两条细绳的方向,并记录弹簧秤的读数。注意在使用弹簧秤的时候,要使细绳与木板平面平行。 (4)用铅笔和刻度尺从力的作用点(位置O)沿着两条绳套的方向画直线,按选定的标度作出这两只弹簧秤的拉力F1和F2的图示,
12、以F1和F2为邻边利用刻度尺和三角板作平行四边形,过O点画平行四边形的对角线,即为合力F的图示。(5)只用一只弹簧秤通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧秤的读数和细绳的方向,用刻度尺从O点按选定的标度沿记录的方向作出这只弹簧秤的拉力F的图示。(6)比较一下,力F与用平行四边形法则求出的合力F在大小和方向上是否相同。(7)改变两个力F1、F2的大小和夹角,再重复实验两次。5.注意事项:(1)弹簧测力计在使用前应检查、校正零点,检查量程和最小刻度单位。(2)用来测量F1和F2的两个弹簧测力计应用规格、性能相同,挑选的方法是:将两只弹簧测力计互相钩着,向相反方向拉,若两弹簧测力计对应的
13、示数相等,则可同时使用。(3)使用弹簧测力计测拉力时,拉力应沿弹簧测力计的轴线方向,弹簧测力计、橡皮筋、细绳套应位于与木板平行的同一平面内,要防止弹簧卡壳,防止弹簧测力计或橡皮筋与纸面摩擦。拉力应适当大一些,但拉伸时不要超出量程。(4)选用的橡皮筋应富有弹性,能发生弹性形变,实验时应缓慢地将橡皮筋拉伸到预定的长度同一次实验中,橡皮筋拉长后的结点位置必须保持不变。(5)准确作图是本实验减小误差的重要一环,为了做到准确作图,拉橡皮筋的细绳要长一些;结点口的定位应力求准确;画力的图示时应选用恰当的单位标度;作力的合成图时,应尽量将图画得大些。(6)白纸不要过小,并应靠木板下边缘固定,A点选在靠近木板
14、上边的中点为宜,以使O点能确定在纸的上侧。【典型例题】类型一、合力与分力的关系例1、关于F1、F2及它们的合力F,下列说法中正确的是( ) A合力F一定与F1、F2共同作用产生的效果相同 B两力F1、F2一定是同种性质的力 C两力F1、F2一定是同一个物体受到的力 D两力F1、F2与F是物体同时受到的三个力【思路点拨】合力与分力之间满足平形四边形定则。【答案】AC【解析】只有同一个物体受到的力才能合成,分别作用在不同物体上的力不能合成合力是对原来几个分力的等效替代,两力可以是不同性质的力,但合力与分力不能同时存在所以,正确选项为A、C【点评】解答本题的关键是明确合力的作用效果与几个分力同时作用
15、的效果相同,合力与分力是等效替代关系举一反三【高清课程:力的合成与分解 例题2】【变式1】若两个共点力F1、F2的合力为F,则有( )A合力F一定大于任何一个分力B合力F至少大于其中的一个分力C合力F可以比F1、F2都大,也可以比F1、F2都小D合力F不可能与F1、F2中的一个大小相等【答案】C 【变式2】两个共点力的合力为F,如果它们之间的夹角固定不变,使其中一个力增大,则( )A合力F一定增大B合力F的大小可能不变C合力F可能增大,也可能减小D当090时,合力F一定减小【答案】BC 类型二、两个力合力的范围例2、(2015 山东潍坊一中期末考)作用在一个物体上的两个力、大小分别是30N和4
16、0N,如果它们的夹角是90,则这两个力的合力大小是( )A.10N B.35N C.50N D.70N【答案】C【解析】本题可用作图法和计算法两种方法求解 (1)作图法:用1 cm长的线段代表10N,作出F1的线段长4cm,F2的线段长3cm,且彼此垂直,如图所示 以F1和F2为邻边作平行四边形,连接两邻边所夹的对角线用刻度尺量出表示合力的对角线长度为5.0cm,所以合力大小 (2)计算法:分别作出F1、F2的示意图,如图所示,并作出平行四边形及对角线 在直角三角形中 【点评】应用作图法时,各力必须选定同一标度,并且合力、分力比例适当,虚线、实线分清 作图法简单、直观,但不够精确 作图法是物理
17、学中的常用方法之一 请注意图1与图2的区别举一反三【变式1】有两个大小不变的共点力F1和F2,它们合力的大小随两力夹角变化情况如图所示,则F1、F2的大小分别为多少?【答案】8N、4N或4N、8N【解析】对图的理解是解题的关键其中两个力的夹角为0弧度(0)与弧度(180)的含义要搞清 当两力夹角为0时,F1+F2,得到F1+F212N ,当两力夹角为时,得到F1-F24N或F2-F14N ,由两式得F18 N,F24N或F14N,F28N故答案为8N、4N或4N、8N【变式2】两个共点力的大小分别为F1和F2,作用于物体的同一点两力同向时,合力为A,两力反向时,合力为B,当两力互相垂直时合力为
18、( ) A B C D【答案】B【解析】由题意知 F1+F2A,F1-F2B, 故, 当两力互相垂直时, 合力【变式3】在天花板下用等长的两根绳悬吊一重物,两根绳夹角为=60,每根绳对重物的拉力均为10N,求 :绳子上拉力的合力和物重。【答案】 类型三、三个力求合力例3、(2015 海南中学期末考)物体同时受到同一平面内的三个共点力作用,下列几组力中,可能使物体处于平衡状态的是( )A . 5N 、 7N 、 8 N B . 2N 、 3N 、 6N C . 1N 、 5N 、 10 N D . 1N 、 10N 、 10N【答案】AD【解析】A、5N与7N合成最大12N,最小2N,当取8N时
19、与第三个力合成,得到最小值为0N,故A正确。B、2N和3N合成最大为5N,最小为1N,不可能为6N,故与第三个力不可能平衡。C、1N与5N合成最大6N,最小4N,不可能为10N,故与第三个力不可能平衡。D、1N与10N合成最大11N,最小9N,当取10N时与第三个力合成,得到最小值为0N,故选AD【点评】三个力求合力,先将其中任意两个力合成,然后看剩余的力是否在这两个力合力的范围内,若在,合力最小一定为零。若不在,将剩余的力与这两个力的合力作差,最小值就是最小的合力。合力最大值将所有的力求和即可。举一反三【变式1】如图所示,大小分别为F1、F2、F3的三个力恰好围成封闭的直角三角形(顶角为直角
20、)如图所示,这三个力的合力最大的是( )【答案】C【解析】A中合力为F1,B中合力为零,C中合力为F2,D中合力为F3,由于F2F3F1,故C中合力最大【变式2】物体同时受到同一平面内的三个共点力的作用,下列几组力的合力不可能为零的是( ) A5 N,7 N,8 N B5 N,2 N,3 N C1 N,5 N,10 N D10 N,10 N,10 N【答案】C【解析】三力合成,若前面力的合力可与第三力大小相等,方向相反,就可以使这三力的合力为零,即只要使第三力在其他两力的合力范围之内,就可能使合力为零,即第三力F3满足:|F1-F2|F3F1+F2选项A中,前两力合力范围是:2N12N,第三力
21、在其范围之内;选项B中,前两力合力范围是:3N7N,第三力在其合力范围之内;选项C中,前两力合力范围是:4N6N,第三力不在其合力范围之内;选项D中,前两力合力范围是:020N,第三力在其合力范围之内,故只有C中第三力不在前两力合力范围之内,即C项中的三力合力不可能为零类型四、矢量三角形例4、如图所示,F1 、F2 、F3组成了一个三角形,下列说法正确的是( )AF3是F1 、F2的合力BF2是F1 、F2的合力CF1是F2 、F3的合力D以上都不对【答案】A【解析】在力的三角形图中,如果有两个顺向箭头,比如题中的F1 和F2,这两个力就是分力;另一个力就是合力。【点评】根据平行四边形定则,合
22、力和两个分力必构成一个封闭的矢量三角形,叫做力的三角形定则。如图所示。但是,在不标箭头的三角形不能确定谁是合力。举一反三【高清课程:力的合成与分解 例题3】【变式1】设有5个力同时作用于质点o,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示,则这5个力的合力等于其中最小力的( )A、3倍 B、4倍 C、5倍 D、6倍【答案】D类型五、依据力的作用效果分解例5、假设物体沿斜面下滑,根据重力的作用效果将重力分解,关于分解后的两个分力,下列叙述正确的是( )A平行于斜面方向使物体沿斜面下滑的力B垂直于斜面对斜面的压力C垂直于斜面使物体压紧斜面的力D物体至少要受到重力以及重力的两个分力三
23、个力的作用【思路点拨】分解力应该按照它的实际效果来分解。【答案】AC【解析】重力的两个作用效果,可分解为平行于斜面方向使物体沿斜面下滑的力和垂直于斜面使物体压紧斜面的力。B答案在于分力的作用点作用于斜面上,作用点应保持不变,所以不正确。D答案重复考虑了力的作用效果。【点评】力的分解只是研究问题的一种方法,分力的作用点要和已知力的作用点相同。若考虑了分力的作用效果,就不能考虑合力的作用效果,或者考虑了合力的作用效果后,就不能考虑分力的作用效果,否则就是重复考虑了力的作用效果。举一反三【变式1】在光滑的斜面上自由下滑的物体受到的力是( )A重力、下滑力 B重力和斜面的支持力C重力、下滑力和斜面的支
24、持力 D重力、支持力、下滑力和正压力【答案】B【解析】该物体受到重力,还与斜面接触,由于斜面是光滑的,所以物体受到斜面对其的支持力。而下滑力是重力的一个分力,正压力是作用于斜面上的,所以不是物体受到的力。【变式2】图中灯重为G,悬吊灯的两绳OA与竖直方向夹角为,OB沿水平方向,求OA绳和OB绳受的拉力的大小。【答案】类型六、附加一些条件将力进行分解例6、一根长为L的易断的均匀细绳,两端固定在天花板上的A、B两点若在细绳的C处悬一二重物,已知ACCB,如图所示则下列说法中正确的应是( ) A增加重物的重力,BC段先断 B增加重物的重力,AC段先断 C将A端往左移比往右移时绳子容易断 D将A端往右
25、移时绳子容易断【思路点拨】将重物对C点的拉力分解为AC和BC两段绳的拉力,转化成数学中三角形的相关边、角关系即可求解。【答案】AC【解析】研究C点,C点受重物的拉力,其大小等于重物的重力,即FTG将重物对C点的拉力分解为AC和BC两段绳的拉力,其力的平行四边形如图所示,因为ACCB,所以FBCFAC 当增加重物的重力G时,按比例FBC增大的较多,所以BC段绳先断,因此选项A是正确的,而选项B是不正确的, 将A端往左移时,FBC与FAC两力夹角变大,合力FT一定,则两分力FBC与FAC都增大将A端向右移时两分力夹角变小,两分力也变小,由此可知选项C是正确的,而选项D是错误的。【点评】把数学中三角
26、形的相关边、角关系,迁移到力的矢量图的分析中来,这种能力是学习中必须具备的举一反三【高清课程:力的合成与分解 例题1】【变式1】细绳悬挂一光滑球靠在竖直的墙壁上,球重为G,细绳与墙夹角为。求:球对细绳的拉力T和对墙的压力P。【答案】 【变式2】如图,将力F分解成F1和F2,若已知F1的大小和F2与F的夹角(为锐角),则( )A当F1Fsin时,有两解B当F1=Fsin时,一解C当FsinF1F时,有两解D当F1Fsin时,无解【答案】BCD【解析】当F1=Fsin时,只能构成一个平行四边形,一解,B对。 当FsinF1F时,能画两个平行四边形,有两解,C对。 若F1Fsin时,无法构成矢量三角
27、形,无解,D正确。 当F1Fsin时,且F1F时,只能画一个平行四边形,A错误。 例7、(2016 商丘二模)如图所示,A、B为同一水平线上的两个相同的绕绳轮子,现按箭头方向以相同的速度缓慢转动A、B,使重物C缓慢上升,在此过程中绳子的拉力大小( )A. 保持不变B. 逐渐减小C. 逐渐增大D. 先减小后增大【答案】C【解析】物体受三个力:重力和两个拉力,重物C缓慢竖直上升时三力平衡,合力为零,则知两个拉力的合力与重力大小相等,所以重物C所受的合外力不变,两个拉力合力一定,且两个拉力的夹角不断增大,故拉力不断增大。【总结升华】本题考查了“将一个力分解为等大的两个分力,两个分力的夹角越大,分力越
28、大”的结论,也可以用解析法求解出拉力的表达式进行分析。类型七、验证力的平行四边形定则实验步骤的考查例8、 在做完“验证力的平行四边形定则”实验后,某同学将其实验操作过程进行了回顾,并在笔记本上记下如下几条体会,你认为他的体会中正确的是( )A用两只弹簧秤拉橡皮条时,应使两细绳套间的夹角为900,以便算出合力的大小B用两只弹簧秤拉时合力的图示F与用一只弹簧秤拉时图示不完全重合,在误差允许范围内,可以说明“力的平行四边形定则”成立C若F1、F2方向不变,而大小各增加1N,则合力的方向也不变,大小也增加1ND在用弹簧秤拉橡皮条时,要使弹簧秤的弹簧与木板平面平行【思路点拨】要清楚验证力的平行四边形定则
29、的实验步骤及误差分析。【答案】BD 【解析】用两只弹簧秤拉橡皮条时,应使两细绳套间的夹角不要太小,也不易太大,以便求出合力的大小。夹角不一定为900。实验总是存在误差,在误差允许的范围内,用两只弹簧秤拉时合力的图示F与用一只弹簧秤拉时图示不完全重合,可以说明“力的平行四边形定则”成立。B正确。在用弹簧秤拉橡皮条时,要使弹簧秤的弹簧与木板平面平行,这样读数才能更准确。D正确。C答案不正确,可假设F1、F2方向不变,相互垂直,而大小各增加1N,则合力不会增大1N【点评】要清楚验证力的平行四边形定则的实验步骤及误差分析举一反三【变式】在做“互成角度的两个力的合力”实验时,橡皮条的一端固定在木板上,用
30、两个弹簧秤把橡皮条的另一端拉到某一确定的O点。以下操作中正确的是( )A同一次实验过程中,O点位置允许变动B实验中,弹簧秤必须保持与木板平行,读数时视线要正对弹簧秤刻度C实验中,先将其中一个弹簧秤沿某一方向拉到最大量程,然后只需调节另一弹簧秤拉力的大小和方向,把橡皮条另一端拉到O点D实验中,把橡皮条的另一端拉到O点时,两个弹簧秤之间夹角应取90,以便于算出合力大小【答案】B【解析】该实验的前提是保证力的效果相同。同一次实验过程中,O点位置保持不变,这样保证力的作用效果相同,A错。弹簧秤必须保持与木板平行,读数时视线要正对弹簧秤刻度,B正确。实验中,先将其中一个弹簧秤沿某一方向拉到最大量程,然后
31、只需调节另一弹簧秤拉力的大小和方向,把橡皮条另一端拉到O点,这样不可,有可能另一个弹簧秤超过量程,C错。弹簧秤之间的夹角不易太大也不易太小,但不一定是90,D错。【变式2】探究合力与分力关系的实验的原理是等效原理,其等效性是指( ) A使细绳在两种情况下发生相同的形变 B使两分力与合力满足平行四边形法则 C使两次橡皮条伸长的长度相等 D使两次橡皮条与两绳套的结点都与O点重合【答案】C【解析】本题考查探究合力与分力的关系的实验原理本实验的原理是使两次橡皮条的效果相同是通过橡皮条伸长相等长度,即两个力拉橡皮条的效果和一个力拉橡皮条的效果相同是通过橡皮条伸长相等的长度来体现的所以选项C正确第13页 共13页