收藏 分销(赏)

因式分解专项练习题(含答案).doc

上传人:天**** 文档编号:2311785 上传时间:2024-05-27 格式:DOC 页数:7 大小:48.50KB
下载 相关 举报
因式分解专项练习题(含答案).doc_第1页
第1页 / 共7页
因式分解专项练习题(含答案).doc_第2页
第2页 / 共7页
因式分解专项练习题(含答案).doc_第3页
第3页 / 共7页
因式分解专项练习题(含答案).doc_第4页
第4页 / 共7页
因式分解专项练习题(含答案).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、_因式分解 专题过关1将下列各式分解因式(1)3p26pq (2)2x2+8x+82将下列各式分解因式(1)x3yxy (2)3a36a2b+3ab23分解因式(1)a2(xy)+16(yx) (2)(x2+y2)24x2y24分解因式:(1)2x2x (2)16x21 (3)6xy29x2yy3 (4)4+12(xy)+9(xy)25因式分解:(1)2am28a (2)4x3+4x2y+xy26将下列各式分解因式:(1)3x12x3 (2)(x2+y2)24x2y27因式分解:(1)x2y2xy2+y3 (2)(x+2y)2y28对下列代数式分解因式:(1)n2(m2)n(2m) (2)(x

2、1)(x3)+19分解因式:a24a+4b2 10分解因式:a2b22a+111把下列各式分解因式:(1)x47x2+1 (2)x4+x2+2ax+1a2(3)(1+y)22x2(1y2)+x4(1y)2 (4)x4+2x3+3x2+2x+112把下列各式分解因式:(1)4x331x+15; (2)2a2b2+2a2c2+2b2c2a4b4c4; (3)x5+x+1;(4)x3+5x2+3x9; (5)2a4a36a2a+2因式分解 专题过关1将下列各式分解因式(1)3p26pq; (2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式

3、继续分解解答:解:(1)3p26pq=3p(p2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2 2将下列各式分解因式(1)x3yxy (2)3a36a2b+3ab2 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可解答:解:(1)原式=xy(x21)=xy(x+1)(x1);(2)原式=3a(a22ab+b2)=3a(ab)23分解因式(1)a2(xy)+16(yx); (2)(x2+y2)24x2y2 分析:(1)先提取公因式(xy),再利用平方差公式继续分解;(2)先利用平方差公式,再利用

4、完全平方公式继续分解解答:解:(1)a2(xy)+16(yx),=(xy)(a216),=(xy)(a+4)(a4);(2)(x2+y2)24x2y2,=(x2+2xy+y2)(x22xy+y2),=(x+y)2(xy)24分解因式:(1)2x2x; (2)16x21; (3)6xy29x2yy3; (4)4+12(xy)+9(xy)2分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式y,再对余下的多项式利用完全平方公式继续分解;(4)把(xy)看作整体,利用完全平方公式分解因式即可解答:解:(1)2x2x=x(2x1);(2)16x21=(4x+1)(4x

5、1);(3)6xy29x2yy3,=y(9x26xy+y2),=y(3xy)2;(4)4+12(xy)+9(xy)2,=2+3(xy)2,=(3x3y+2)25因式分解:(1)2am28a; (2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解解答:解:(1)2am28a=2a(m24)=2a(m+2)(m2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)26将下列各式分解因式:(1)3x12x3 (2)(x2+y2)24x2y2分析:(1)先提公因式3x

6、,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式解答:解:(1)3x12x3=3x(14x2)=3x(1+2x)(12x);(2)(x2+y2)24x2y2=(x2+y2+2xy)(x2+y22xy)=(x+y)2(xy)27因式分解:(1)x2y2xy2+y3; (2)(x+2y)2y2 分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可解答:解:(1)x2y2xy2+y3=y(x22xy+y2)=y(xy)2;(2)(x+2y)2y2=(x+2y+y)(x+2y

7、y)=(x+3y)(x+y)8对下列代数式分解因式:(1)n2(m2)n(2m); (2)(x1)(x3)+1分析:(1)提取公因式n(m2)即可;(2)根据多项式的乘法把(x1)(x3)展开,再利用完全平方公式进行因式分解解答:解:(1)n2(m2)n(2m)=n2(m2)+n(m2)=n(m2)(n+1);(2)(x1)(x3)+1=x24x+4=(x2)29分解因式:a24a+4b2分析:本题有四项,应该考虑运用分组分解法观察后可以发现,本题中有a的二次项a2,a的一次项4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解解答:解:a24a+4b2=(a

8、24a+4)b2=(a2)2b2=(a2+b)(a2b)10分解因式:a2b22a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解本题中有a的二次项,a的一次项,有常数项所以要考虑a22a+1为一组解答:解:a2b22a+1=(a22a+1)b2=(a1)2b2=(a1+b)(a1b)11把下列各式分解因式:(1)x47x2+1; (2)x4+x2+2ax+1a2(3)(1+y)22x2(1y2)+x4(1y)2 (4)x4+2x3+3x2+2x+1分析:(1)首先把7x2变为+2x29x2,然后多项式变为x42x2+19x2,接着利用完全平方公式和平方差公式分解因式即可求解;(

9、2)首先把多项式变为x4+2x2+1x2+2axa2,然后利用公式法分解因式即可解;(3)首先把2x2(1y2)变为2x2(1y)(1y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2+x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解解答:解:(1)x47x2+1=x4+2x2+19x2=(x2+1)2(3x)2=(x2+3x+1)(x23x+1);(2)x4+x2+2ax+1a=x4+2x2+1x2+2axa2=(x2+1)(xa)2=(x2+1+xa)(x2+1x+a);(3)(1+y)22x2(1y2)+x4(1y)2=(1+y

10、)22x2(1y)(1+y)+x4(1y)2=(1+y)22x2(1y)(1+y)+x2(1y)2=(1+y)x2(1y)2=(1+yx2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2+x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)212把下列各式分解因式:(1)4x331x+15; (2)2a2b2+2a2c2+2b2c2a4b4c4;(3)x5+x+1; (4)x3+5x2+3x9;(5)2a4a36a2a+2分析:(1)需把31x拆项为x30x,再分组分解;(2)把2a2b2拆项成4a2b22a2b2,再按公式法

11、因式分解;(3)把x5+x+1添项为x5x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x9拆项成(x3x2)+(6x26x)+(9x9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底解答:解:(1)4x331x+15=4x3x30x+15=x(2x+1)(2x1)15(2x1)=(2x1)(2x2+115)=(2x1)(2x5)(x+3);(2)2a2b2+2a2c2+2b2c2a4b4c4=4a2b2(a4+b4+c4+2a2b22a2c22b2c2)=(2ab)2(a2+b2c2)2=(2ab+a2+b2c2)(2aba2b2+c2)=(a+

12、b+c)(a+bc)(c+ab)(ca+b);(3)x5+x+1=x5x2+x2+x+1=x2(x31)+(x2+x+1)=x2(x1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3x2+1);(4)x3+5x2+3x9=(x3x2)+(6x26x)+(9x9)=x2(x1)+6x(x1)+9(x1)=(x1)(x+3)2;(5)2a4a36a2a+2=a3(2a1)(2a1)(3a+2)=(2a1)(a33a2)=(2a1)(a3+a2a2a2a2)=(2a1)a2(a+1)a(a+1)2(a+1)=(2a1)(a+1)(a2a2)=(a+1)2(a2)(2a1)Welcome ToDownload !欢迎您的下载,资料仅供参考!精品资料

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服