收藏 分销(赏)

初中数学说课稿《反比例函数的应用》.docx

上传人:曲**** 文档编号:231086 上传时间:2023-03-21 格式:DOCX 页数:10 大小:25.68KB
下载 相关 举报
初中数学说课稿《反比例函数的应用》.docx_第1页
第1页 / 共10页
初中数学说课稿《反比例函数的应用》.docx_第2页
第2页 / 共10页
初中数学说课稿《反比例函数的应用》.docx_第3页
第3页 / 共10页
初中数学说课稿《反比例函数的应用》.docx_第4页
第4页 / 共10页
初中数学说课稿《反比例函数的应用》.docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、苏教版初中数学说课稿反比例函数的应用-说教材反比例函数的应用是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。-说目标“反比例函数的应用

2、”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:1、知识目标使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真

3、正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题一一问题这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破2、能力目标使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。教法:根据本课教学内容枯燥的特点,结合体育与健康的教学新理念,以学生自主探究学习为主线,针对武术教学比较简单和枯燥的特点,采用情境教学法(通过行抱拳礼和音乐中国功夫,提出问题从而引出本课内容激发学

4、生学习兴趣)和情绪激励法(通过游戏包、剪、锤及教师演示健身拳连贯的动作,激发学生的学习兴趣)进行教学,这样易于激发学生兴趣,促使学生能积极主动地去学习。还采用讲解示范法,在教学的一开始教师正确完整的演示健身拳。以正确优美的示范动作感染学生,激发学生“我很想学”的情感,为学生能更快、更好地掌握组合动作要领而打下基础。引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。3、情感目标通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。引导学生通过观察、交流、归纳、推断等数学活动,感受数学思维的全过程的合理性,培养学

5、生的观察能力、推理能力、归纳能力和灵活运用知识的能力。使学生树立事物是普遍联系的辩证唯物观。引例中让学生具有一方有难八方支援的献爱心精神。三.说教学重难点我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:补充说明:由于上述函数只有b0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b0时的图像以利于学生理解图像向下平移的情况。1 .反比例函数是日常生活和生产实中应用十分广泛的数学模型,它真正体现了数学知识于生活又应用于生活的重要意义。第一组:依次分别列举6和9的倍数。先依次列举6的倍数和9的倍数,圈出它们公有的倍数,这样就找到了6和9的公倍数是18

6、、36、54等,其中最小的一个18就是6和9的最小公倍数。(板书)2 .“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。在突破难点时,我注意:1 .使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。2 .密切联系实际问题,注意观察生活。四.说教学方法(一)教法分析根

7、据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。(一)学法分析这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;

8、培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。(三)教学手段采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。五.说教学过程的设计(一)创设情景,提出问题“问题是数学的心脏”(语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援

9、,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?为了很好的解决这一问题,我们共同来学习以下两道题目:设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习(一)范例设计第二个画面:一群悲哀无助的孩子恐惧地面对一排黑压压的枪口,发出最后的深情呼喊“亲爱的爸爸妈妈“,而回应他们的却是法西斯灭绝人性的枪声,枪声也久久地回荡、回荡。学习例1:小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,小明行车平均速度(u)与所用时间有怎样的函数关系

10、?如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?画出函数的图象。例1中,出现了一个常量,两个变量;我们看,平均速度(u)随所用时间的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.、两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围.问中,指导学生画图,分析问题(多媒体展示函数图象).设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的

11、例2也是在课本例2的基础上添加了一个背景,目的也是如此.由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.学习例2:小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4X104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m

12、和60m,那么蓄水池的深度至少达到多少才能满足要求?这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.问题(1):这是一个几何体积问题,问题中包含有哪些量?哪些是常量?哪些是变量?问题(2):在容积不变的情形下,蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.问题(3):函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?问题(4):能否画出函数的图象?(指导学生画图,分析问题,多媒体展示函数图象.)问题(5):题中、两问能否利用图象来解?如何解?问题(6):题中、两问除了利用图象

13、来解之外,是不是也可以利用方程解或不等式解?设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透”函数一一方程一一不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。(三)反馈练习“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。例2中的新建蓄水池工程需要运送的土石方总量为4X104m3,某运输公司承

14、担了该项工程运送土石方的任务。运输公司平均每天的工程量u(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?运输公司共派出20辆卡车,每辆卡车每天运土石方100m3,则需要多少天才能完成该任务?可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。(四)回到引例,前后呼应现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数

15、成怎样的函数关系?设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。(五)收获教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。(1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。(2)初步学会了数学建模的方法.结合本节的内容特点和学生的年龄特征,本节课我采用启发式、探究式、以及讨论式相结合的教学方法,以问题的提出,问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学。以独立思考和相互交流的形式,在教师的知道下发现问题,分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去思考,探索,从真正意义上完成知识的自我构建。(3)树立了事物是普遍联系的辩证唯物观。(六)作业布置根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展.我的作业布置分必做题和选做题两部分其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦(4)必做题:看课本例1、例2.做课本习题每个小孩都喜欢听童话故事,看童话书,根据这一特点,我出示了色彩鲜艳的图画数字,创设童话情境,目的在于引发孩子的强烈的兴奋感和亲切感,为学习新知创设良好的环境。第10页/共10页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服