2019通山一中高三数学导学案 使用时间:2019.03.15 编制人:王有炎 审核人:李玲 班级: 小组: 姓名: 评价:第5讲 导数压轴题之隐零点问题-隐形零点、设而不求归纳:第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程,并结合的单调性得到零点的范围;第二步:以零点为分界点,说明导函数的正负,进而得到的最值表达式;第三步:将零点方程适当变形,整体代人最值式子进行化简证明;有时候第一步中的零点范围还可以适当缩小,我们将其称为隐形零点三部曲.导函数零点虽然隐形,但只要抓住特征(零点方程),判断其范围(用零点存在性定理),最后整体代入即可.1设函数,设求证:当时,. 2函数f(x)=alnxx2+x,g(x)=(x2)exx2+m(其中e=2.71828)(1)当a0时,讨论函数f(x)的单调性;(2)当a=1,x(0,1时,f(x)g(x)恒成立,求正整数m的最大值3已知函数f(x)=,其中a为常数(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,a)上单调递增,求实数a的取值范围;(3)若a=1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)24已知函数()当a=2时,(i)求曲线y=f(x)在点(1,f(1)处的切线方程;(ii)求函数f(x)的单调区间;()若1a2,求证:f(x)1第1页(共1页)