收藏 分销(赏)

镁合金笔记本电脑外壳冲压模具设计.doc

上传人:精**** 文档编号:2281927 上传时间:2024-05-24 格式:DOC 页数:34 大小:3.56MB
下载 相关 举报
镁合金笔记本电脑外壳冲压模具设计.doc_第1页
第1页 / 共34页
镁合金笔记本电脑外壳冲压模具设计.doc_第2页
第2页 / 共34页
镁合金笔记本电脑外壳冲压模具设计.doc_第3页
第3页 / 共34页
镁合金笔记本电脑外壳冲压模具设计.doc_第4页
第4页 / 共34页
镁合金笔记本电脑外壳冲压模具设计.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、、 湖南工学院毕业设计(论文) 第34页 1 绪论1.1 选题背景及目的金属镁及其合金是迄今在工程应用的最轻的结构材料,常规镁合金比铝合金轻30%50%,比钢铁轻70%以上,应用在工程中可大大减轻结构件质量。同时镁合金具有高的比强度和比刚度,尺寸稳定性高,阻尼减震性好,机械加工方便,尤其易于回收利用,具有环保特性。20世纪80年代以来镁合金的研究得到飞速发展,随着镁合金应用面的不断扩大镁合金的研究和开发也进入了新时代。然而镁合金的研究和发展还很不充分,很多工作还处于摸索阶段,很多有关镁合金性能的研究还没有得到完全发展。对镁合金的成型技术的研究目前主要在金属型铸造,砂型铸造,低压铸造,差压铸造,

2、熔模铸造,压力铸造和技压铸造等方面,对镁合金的冲压工艺研究较少。但是,镁合金冲压方面的应用前景较好,除了可以减轻质量,外观漂亮外,特别是电磁屏蔽能力好。本文结合省自然科学基金项目镁合金深加工研究,主要进行变形镁合金的板材成型性分析设计。1.2 国内外研究状况近年来,镁合金的开发和应用已经受到世界各国的重视,尤其西方发达国家十分重视变形镁合金的研究与开发,变形镁合金材料已开始向系列化发展,产品应用领域不断扩展。其中美国的变形镁合金材料体系较为完备,合金系列有Mg-Al、Mg-Zn、Mg-RE、Mg-Li、Mg-Th等,可以加工成板、棒、型材和锻件,并且开发出了快速凝固高性能变形镁合金非晶态镁合金

3、及镁基复合材料等。美国与世界上最大的镁生产企业挪威Novsk Hydro 公司签订了长期的合作关系。日本也开始着重研究镁的新合金、新工艺、开发超强高变形镁合金材料和可冷压加工的镁合金板材。英国开发出了Mg-Al-B挤压镁合金用于Magnox核反应堆燃料罐。以色列最近研制出了用在航天飞行器上、兼具优良力学性能和耐蚀性能的变形镁合金1。我国变形镁合金材料的研制与开发仍处于起步阶段,缺少高性能镁合金板、棒和型材,国防军工、航天航空用高性能镁合金材料仍依靠进口,民用产品尚未进行大力开发,因此,研究和开发性能优良、规格多样的变形镁合金材料显得十分重要。1.3 课题研究方法镁合金在常温下的塑性很低,因此不

4、适于常温下冲压成形。镁合金在热态下具有较好的塑性,甚至在一些不利于其他材料成形的应力-应变状态下也可以成形,但变形速度不宜太大。镁合金板材在250左右拉深时其拉深比超过铝合金和低碳钢板的常温拉深成形极限。在175镁合金板形件拉深的拉深比可达2.0,225可达3.0。本次设计主要是根据镁合金AZ31板材加热时的拉深性能来进行模具设计,镁合金AZ31板材拉深成形时主要工艺参数有拉深力、成形速度、坯料温度、模具预热温度、润滑方式、模具圆角、模具间隙、压边力等,这些因素对坯料的拉深成形结果均有不同程度的影响2。1.4 论文构成(1)选题背景和研究方法和。(2)冲压工艺规程 通过对工件的工艺分析和工艺计

5、算,考虑经济性和可行性的前提下,确定工艺方案。(3)进行模具设计 拉深模设计和修边模设计。(4)设计总结 总结本次设计之后所得到的收获和改进意见。2 冲压工艺规程的编制2.1冲压件的工艺分析冲压件的零件图如图2.1所示图2.1 零件图图2.2 立体图2.1.1 材料制件材料为镁合金AZ31,料厚为1mm,其化学成分及拉伸力学性能如表1.1所示:表1.1 镁合金AZ31化学成分合 金 Mg Al Mn Zn Zr Min Si AZ31B 剩余 2.5-3.5 0.20-1.0 0.6-1.4 - 0.10 合 金Cu Ni Fe Ca 其 他 杂 质 AZ31B0.05 0.005 0.005

6、 0.04 0.30 镁合金具有比重轻,比强度高,阻尼性及切削加工性能好,导热性好、电磁屏蔽能力强等优点,广泛应用于汽车工业、电子、通讯、家用电器、航空航天、计算机、纺织设备、印刷设备、包装设备、军工等行业。镁合金管材、棒材、型材、线材拉伸力学性能应达到表1.2所列最低。表1.2 镁合金的拉伸力学性能要求合 金状 态产 品标定厚度或直径/mm管材标定横截面积/ mm或直径/mm抗拉强度min/MPa0.2%屈服强度min/mm伸长率(50mm或4D) min/ %D、EAZ31F棒、型6.30所有2401457线 材6.30-40.00所有240150740.00-60.00所有2351507

7、60.00-130.00所有2201407空心型 材所 有所有2201108管 材0.70-6.301502201408本次所做的笔记本电脑外壳冲压模设计所用材料应为镁合金AZ31型材,它为中强合金,可焊,良好的成型性2.1.2 结构工艺性分析零件的结构工艺性分析如表1.3所示 表1.3 工艺性分析表分析项目冲压件的形状尺寸工艺性允许值分析结论拉深工艺性形状圆角半径拉深压边盒形,形状规则无尖角R3t/D100=0.381.5t=1.53形状相对简单。工艺结构大于允许最小值。拉深容易起皱,需要压边。 此零件的设计过程中,有拉深这一工艺过程,液压机没有固定的行程,不会因薄板的厚度的变化而超载,特别

8、是对于需要很大的施力行程加工时,具有明显的优点,并且液压机下面可以原有的液压机顶缸,用来顶出零件,所以选用液压机。2.2毛坯形状、尺寸的确定笔记本电脑外壳的拉深是属于盒形件的拉深,盒形件是一种非回转体零件,它的侧壁是由两对长度分别为A-2r和B-2r的直边及四个半径为r的转角所构成。盒形件拉深时,由于其几何形状的非回转性,变形沿壁周向的分布是不均匀的;直边区域变形量小,圆角区域变形量大,变形分布非常复杂。盒形件拉深时,圆角部分近似圆筒形件的拉深,直边部分近似板料弯曲,但是,直边部分并不是单纯的弯曲变形。由于圆角部分的材料要图向直边流动,因而直边部分也产生了 2.3 盒形件形状横向压缩、纵向伸长

9、的变形。而圆角部分,由于直边的存在,金属的流动,使圆角部分的变形程度大为减小。2.2.1 盒形件的修边余量当盒形件的高度小而对上口要求不高时,才可免去修边工序。一般情况下,盒形件在拉深后都需要修边,所以在确定毛坯尺寸和进行工艺计算之前,应在工件高度或凸缘宽度上加修边余量。H0/r=18/3=6H0 图纸要求的盒形件高度H 修边余量H 记入修边余量的工件高度r 盒形件侧壁间的圆角半径 图2.4 盒形件修边余量 查文献5表4-24得 H=(0.030.05)H0取 H=0.05H0=0.0518=0.9则 H= H0+H=18.9 2.2.2 盒形件毛坯尺寸计算 r/(B-H)=3/(260-18

10、.9)=0.0120.22 查文献5图4-57可知此盒形件属于a区,即角部圆角半径较小的低盒形件。拉深特点:只有微量的材料从盒形件的圆角处转移到侧壁上去,而几乎没有增补侧壁的高度。其毛坯尺寸计算步骤如下: (1)计算壁部展开长度: l=H+0.57r底由于笔记本电脑外壳两侧不是对称的,且是一段圆弧,所以,侧壁就取圆弧长度,两侧统一取H=22mm l1=22+0.573=23.71mm l2=18.9+0.573=20.61(2)按拉深计算角部毛坯半径R当r=r底时 R1=(2rH1)1/2=(2323.71)1/2=12mm R2=(2rH2)1/2=(2320.61)1/2=11mm 统一取

11、R=12mm 图2.5 毛坯尺寸计算方法(3)从ab线段的中心向半径为R的圆弧引切线。(4) 在直线与切线的交接处,用半径为R的圆弧,光滑连接,即可得出毛坯外形。 按上述方法计算出毛坯尺寸及外形为:H/B=18.9/260=0.073t/D100=1/293100=0.34r/B=3/260=0.0115查文献5表4-26 H/B1=0.3/0.85=0.255H/B1m1 所以可以一次拉成2.3 排样设计及材料利用率计算2.3.1 排样方式:为使模具设计简单以及送料方便,故选用尺寸为1000750mm,厚1.0mm的镁板,每块生产6件。2.3.2 材料利用率计算:2.4工艺方案的确定2.4.

12、1基本工序的确定:该零件加工的基本工序确定为落料、拉深、冲孔、修边。对于本产品,如果省去切口工序,即在落料时把切口部分的材料去掉,毛坯外形为,显然,如果这样则可以省去一道工序,但是,在以后的拉深过程中,各边会发生很大变形,不能保证零件的尺寸精度要求,所以此种方法不能用,切口工序必须有,且应该放在后面的工序中。显然不能先冲孔在拉深,否则孔很容易变形。若先拉深后冲孔,则能保证成形后尺寸要求。按照常理,落料拉深完全可以做成复合模,但由于镁合金在拉深时必须加热,且在拉深过程中,需要设置拉深筋、拉深坎,所以不宜使用落料拉深复合模。2.4.2不同工艺方案的比较方案一:落料-拉深-冲孔-修边方案二:落料拉深

13、复合模-冲孔 -修边方案三:落料、拉深、冲孔级进模 -修边方案四:落料(切口部分材料落料先切去)-拉深冲孔复合模比较以上四种方案,显然,方案四中落料时省去切口工序,将导致精度不能达到要求,而且在拉深过程中需要加热,并且拉深速度比较慢,所以不宜设计复合模,所以方案四不宜选用。方案三 设计级进模可以省去工序,使生产效率提高,但是它存在和方案四相同的问题,那就是拉深时需要加热,且拉深速度较慢,这样加热时所有的零件一起加热浪费资源,而且,成本过高,所以也不宜选用。方案二 也是由于拉深时需要加热,不宜选用复合模。方案一 设计单工序模,虽然这样效率虽然不是最高,但从节约资源的角度和从科研方面来讲都是最好的

14、,所以选用方案一。2.5. 工艺计算2.5.1 落料工序落料工序采用平刃口落料力F落=1.3F0=1.3Lt=1.32(339+297) 1140=252616N=252.6KN其中 t 材料厚度 ,单位为mm;材料抗剪强度, 单位为Mpa;L冲裁周长 ,单位为mm;卸料力F卸=K3 F落查文献3表2-10得 K3=0.08F卸=0.08252.6=20.2KN所以 F总= F落+ F卸=252.6+20.2=272.8KN所以选择Y32-100型液压机落料时凸、凹模工作部分的尺寸与公差确定凸、凹模尺寸及制造的原则:(1)落料件的尺寸取决于凹模尺寸,冲孔尺寸取决于凸模尺寸。(2)根据刃口的磨损

15、规律,如果刃口磨损后尺寸变大,则刃口应取接近或等于工件的最小极限尺寸,如果刃口磨损后尺寸减少,则刃口应取接近或等于工件的最大极限尺寸。(3)在选择凸凹模尺寸公差时,既要保证工件的精度要求和合理的冲裁间隙,又不能使凸凹模的尺寸精度过高。对于简单形状的冲裁模具一般采用凸凹模分开加工落料件尺寸D0-Dd=(D-x)0dDp=(D-Zmin)0-p= (D-x- Zmin) 0-p式中Dd、Dp分别为落料件凹模和凸模尺寸工件公差p、d分别为凹模、凸模制造公差x磨损系数工件精度为IT14 取x=0.5,对直边部分查文献3表2-6 得 p=0.035mmd=0.050mm查文献8附表1 得 1=1.3 m

16、m2=1.4 mm表1-2-20 Zmin=0.01 mmDd1=(293-0.51.3)+0.050=292.35+0.050Dp1=(292.35-0.1)0-0.035=292.250-0.035Dd2=(340-0.51.4)+0.050=339.3+0.050Dp2=(339.3-0.1)0-0.035=339.20-0.035圆角部分D0=24 D0=22查文献3 得 p=0.02 mmd=0.025 mm查文献8附表1 1=2=0.52 mm表1-2-20 Zmin=0.1 mmDd0=(24-0.50.52) +0.0250=23.74+0.0250 Dp0=(23.74-0.

17、1)0-0.02=22.640-0.02Dd0=(22-0.50.52)+0.0250=21.74+0.0250Dp0=(21.74-0.1)0-0.02=21.640-0.022.5.2 拉深工序拉深时需要加热到300,用来提高镁合金的拉深性能,常温下,镁合金不能拉深。查文献9附表A2得 300时其抗剪强度 =3550Mpa抗拉强度 b=3050 Mpa查文献8表1-4-29 盒形件一次拉深时的拉深力F拉 F拉=(2A+2B-1.72r)tbK4其中 A、B盒形件的长与宽r盒形件圆角半径t材料厚度b抗拉强度 单位(Mpa)K4系数H/B=18.9/260=0.07r/B=3/260=0.01

18、15t/D100=1/297100=0.33查文献80表1-4-33 得 K4=0.7所以F拉=(2260+2305-1.723)1500.7=39369N40KN查文献8表1-4-26 得压边力 F压=APA压边圈下的坯料面积P单位压边力由文献8表1-4-28 得 P=3F压=(293340-260305)3=60960 N61 KN总压力F总= F拉+ F压=40 KN +61 KN =101KN所以选择Y32-100型液压机2.5.3 冲孔工序冲孔力F冲=1.3Lt=1.3814+4(15+13)/21140=99008N99KN推料力F推=n K推F冲=50.05599=27.23KN

19、卸料力F卸=K卸 F冲=0.0499=3.96 KNn=5 是同时留在凹模刃口内废料的片数查文献3表2-10得 K推=0.055 K卸=0.04F总=F冲+F推+F卸=99+27.23+3.96=130 KN所以选择Y32-100型压力机2.5.4 修边工序对于笔记本电脑外壳两端的缺口,可以通过切口工序完成,切口又分两个方向进行,水平方向和垂直方向,并且切口1、2之间的距离只有5mm,切口3的长度较大,所以不能一次切成,要先在切口1、3的水平方向切一次,然后再切1、3的垂直方向,再在切口2上水平垂直方向一次切成。此时修边工序才算完成。切边力的计算: 图2.6 修边顺序(1)第一次切边 F切=1

20、.3Lt 式中:F切切边力(N)L工件轮廓周长(mm)t-材料厚度(mm)-材料的抗剪强度(Mpa)则F切=1.37801.0140141960N=142(KN)(2)第二次切边F切=1.3Lt则F切=1.37241.0140131768N=132(KN)(3)第三次切边F切= F切1+F切2=1.3(802+182)1140+1.3(802+42)1140=64792N =65KN选择J31-2500型闭式单点压力机2.6冲压工艺过程卡片表1.4 冲压工艺过程卡片湖南大学冲压工艺卡片产品型号零件图号产品名称笔记本电脑外壳冲压件零件名称材料板料规格毛坯尺寸毛坯可制件数材料技术要求共3页镁合金A

21、Z311.075010002933406第1页工序号工序名称工序简图设备模具工时0下料剪板机1落料Y32-100型液压机落料模2拉深Y32-100型液压机拉深模3冲孔Y32-100型液压机冲孔模4斜楔修边模J312500压力机修边模5垂直修边模J312500压力机修边模垂直斜楔修边复合模J312500压力机水平垂直修边复合模3 拉深模设计3.1 模具的结构形式因为制件材料较薄,为保证制件平整,采用弹性压边装置。为方便操作和取件及保证压边力均匀,压力机采用液压机。在设计时,弹性压边圈装在下模的拉深模,这种模具的特点就是可选用压力大的弹簧,橡皮或气垫,用以增大压边力,同时压边力是可调的,以满足拉深

22、件的要求。其结构形式为:图3.1 拉深模装配图拉深过程中主要是要满足拉深时的外形尺寸,拉深过程中的问题是可能会出现起皱,并且对于这类覆盖件拉深时,毛坯各处的变形程度相差很大,需要采用拉深筋来控制毛坯各段流入凹模的阻力,亦即调整毛坯周边各边的径向拉应力。拉深筋在毛坯周边的布置,与零件的几何形状、变形特点和拉深程度有关。在变形程度大、径向拉应力也大的圆角处,可不设或少设拉深筋。直边处则设13条拉深筋,以增大变形阻力,从而调整送料阻力和进料阻力。对于加热时进行拉深,要对毛坯和模具一起进行加热,只对毛坯进行加热的而对模具不加热的冲压只可用于变形程度不大的情况。因为当只对毛坯进行加热时,毛坯有加热炉送至

23、冷模具上开始冲压,毛坯的温度将有70到150度的降低,所以要想让毛坯拉深时的温度符合要求,则毛坯就需要加热到更高的温度。由于镁合金拉深性能不好,所以拉深时对毛坯和模具一起进行加热。3.2. 模具刃口尺寸计算3.2.1 上下模刃口尺寸计算由于零件一次可以拉成,所以凸模的尺寸就是零件的内部尺寸。盒形件拉深时的间隙直边部分和圆角部分是不相等的,直边部分一般取z/2=(11.1)t。直边部分 z/2=1.1t=1.1mm 图3.2凸凹模间隙 圆角部分的间隙求法如图3.3所示5此零件要求外形尺寸,所以计算圆角部分的间隙要用b)图。rp=(0.414rB+0.1t)/0.414式中 rp凸模的圆角半径;r

24、B=rd-Z/2本次设计中 rB=4-1.1=2.9mmrp=(0.4142.9+0.11)/0.414=3.24mm所以凸模圆角半径 rp=3.24mm 取rp=3.5mm a)工件要求内形尺寸 b)工件要求外形尺寸 图3.3 盒形件圆角部分间隙3.2.2 压力中心计算为了保证压力机和模具正常地工作,必须使冲模的压力中心与压力机滑块中心线相重合。否则冲压时会使冲模与压力机滑块歪斜,引起凸凹模间隙不均和导向零件加速磨损,造成刃口和其他零件的损坏。在拉深过程中,压力是不均匀的,并且此零件的几何形状不是完全对称的,所以压力中心的计算比较麻烦,又因为此零件近似对称,所以就近似把它的几何中心定义为压力

25、中心。3.3 零件设计及标准件选择3.3.1 凸模的设计(1) 凸模尺寸凸模尺寸26030585mm(2) 凸模强度校核由于凸模属于不规则零件,所以要按凸模工作端面尺寸计算,分为两种情况,即凸模端面宽度B大于冲裁件厚度t如图3.4a)和端面宽度B小于或等于冲裁件厚度t如图b)。冲裁件厚度只有1mm,所以属于图3.4a)所示的情况。查文献11,则需核算刃口接触强度应力k,因此此时接触应力k应大于平均应力0。图3.4 计算凸模强度时所取的面积k=Lt/Fk式中 L冲件轮廓长度(mm)t冲件材料厚度(mm)冲件材料抗剪强度(N/mm2)Fk接触面积(mm2)取接触面积宽度为t/2k凸模刃口接触应力凸

26、模材料许用应力 取=1800N/mm2k=(3052+2602)150/(3051+2601)=100=1800所以强度符合条件(3) 凸模的结构形式因为凸模与模座接触面积较大,所以直接用螺钉固定,如图所示,因为凸模所受力并不是很大,所以直接把凸模固定在下模座上,并以底面止扣定位,使整体结构趋于简单。图3.5 凸模3.3.2 凹模的设计1) 凹模的形状及尺寸凹模形状如图所示,根据模具实际结构的需要,现设计其尺寸为40040070mm,为防止压手 应h1大于20mm以上。图3.6 凹模2) 凹模的刃口形式采用平刃口,特点是刃磨后刃口尺寸不变。3.3.3 定位板的设计定位板的作用是对于单个毛坯的外

27、轮廓进行定位,定位板与坯料定位面的配合可采用H9/h9的间隙配合,查文献8表1-2-42得:h=t+2=1+2=3mm所以定位板的尺寸为4004003mm,与压边圈配做。3.3.4 弹性压边圈的设计由于笔记本电脑外壳的圆角部分的半径较小,在拉深过程中可能会出现起皱的情况,为保证正常生产,需要加压边圈,压边力的大小对拉深力有很大影响,压边力太大会增加危险断面的拉应力,导致拉裂或严重变薄,太小则防皱效果不好。压边装置有刚性和弹性两种,本次设计采用弹性压边装置,弹性压边装置的压边力系由底油缸、弹簧或橡皮产生,其中,油缸压边力不随凸模行程变化,压边效果较好,弹簧和橡皮压边力都随行程增大而上升,对拉深不

28、利,所以选用油缸压边装置。弹性压边装置的尺寸根据模具的实际需要设为4004008mm,与凸模间隙配合。3.3.5 拉深筋的设计毛坯各处的变形程度相差很大,需要采用拉深筋来调整,拉深筋的结构和位置对覆盖件的拉深成形的质量有极其重要的影响,拉深筋的结构与产生的阻力密切相关,不合理的结构,将使筋的作用不能正常发挥。拉深筋合理的位置应同时满足下列条件(1)起外皱图3.7是压筋瞬间状态。包筋所用材料来自外缘,就外缘变形而言,其性质纯属不带压边圈情况下的拉深,应满足不用压边圈的判据,否则会起外皱,如果在dj之外设置一平面压边圈并单独施加平面压边力,则压筋时外皱可以避免。 (2)不起内皱 图3.7 拉深筋诱

29、发外皱由经验得知,筋的阻力随着位置的外移而呈上升趋势,在结构一定的情况下,阻力近是位置的函数。(3)不拉裂阻力的增大虽然可以消除内皱,但阻力过大又会造成内部的拉裂,在筋结构已定的情况下,通过调整位置参数可以避免。3.3.6 上下模座、导柱导套的设计模座选用标准模座,导柱导套也选用标准的。模座选用GB2855.5-81,硬度为HRC28-32,材料为HT200。上模座尺寸为A40040055,下模座尺寸为A40040065。在安装模具时,模具的方向容易产生误差,防止的办法就是打上和模记号,或使导柱间距不一样。所以模座上的两个导柱的直径不一样,其中一个的导柱直径为45mm,导套直径为60mm,另一

30、个导柱直径为50mm导套直径为65mm。3.3.7 出件装置的设计出件装置的结构如图所示,这样的设计模柄就要选用中间有孔的,以方便打料杆从中间孔中通过,其出件过程就是打料杆1和卸料板2把工件敲出来。图3.8 卸料装置3.4模具闭合高度的计算H=H1+H2+H3+H4=55+70+85+65=275mm其中,H1为上模座高,H2为凹模高,H3为凸模高,H4为下模座高。3.5装配图及零件图的绘制在A1图纸上按比例1:1绘制装配图,在A4图纸上绘制零件图。3.6 压力机校核表2.1 压力机的校核校核内容压力机参数 模具参数结论动梁最大行程600远远小于可以将零件放进取出动梁至工作台面最大距离Hmax

31、=900Hmin=230H=275满足工作台尺寸586950下模座尺寸为560560满足要求4 修边模设计4.1 模具的结构形式修边模包括单纯的修边模和修边冲孔复合模,修边模根据镶块的运动方式可以分为三种基本类型:垂直修边模 修边镶块与压力机滑块的运动方向一致作垂直运动的修边模斜楔修边模 修边镶块作水平或倾斜运动的修边模垂直斜楔修边模 一些修边镶块作垂直方向运动,而另一些修边镶块最水平或倾斜方向运动的修边模在本次设计中,如果从经济方面考虑,则应选择垂直斜楔修边模,但是由于其中一个切口尺寸过大,如果选择垂直斜楔修边模,则工件的精度难以得到保证。所以应该先选择斜楔修边模,再用垂直修边模,这样虽然工

32、序多了一个,但是工件的精度保证了,设计时,应在保证质量的前提下,再考虑经济性。其结构形式为:图4.1 修边模装配图设计修边模时,应做到定位方便、可靠、安全,这样才能保证零件修边的尺寸、位置准确。修边模设计时须注意的问题:采用铸造的上模、下模、压料板防止压料板的掉落,需设置压料板安全机构对于承受水平推力的模具要同时使用导柱和背靠块设置支承器,保护弹性元件部工作时处于自由状态设置模具的起吊装置4.2 压力中心计算由于零件形状基本对称,其几何中心就是压力中心,无需计算压力中心。4.3 零件设计及标准件选择4.3.1 斜楔和滑块的设计(1)斜楔和滑块的行程关系斜楔和滑块配对应用,交直运动为水平运动或倾

33、斜运动,从而扩大冲模的行程,根据零件的需要,本次设计是把垂直运动转换为水平运动,其运动简图如图4.2所示。斜楔1向下推动滑块2沿水平向右移。图4.2 斜楔、滑块运动方式对于水平斜楔机构的行程关系,如下:滑块的运动行程S就是加工时所需的水平方向的行程量,零件取出和放入的操作量的总和。下面是水平斜楔的结构图、行程图和工作受力图,如图4.3、4.4、4.5 图4.3 结构图 图4.4 行程图其计算公式为S3/S=tgQ=F/cos1 图4.5 工作受力图斜楔角不但影响到滑块行程的大小,同时对力的传递和效率也有很大的影响。作水平运动时取=500,为了平衡水平运动的斜楔的反侧力,在斜楔背面装有反侧块。取

34、S=8mm,则S3=8tg50=9.53mm取S3=10mm右边的滑块尺寸为7022235mm,左边的滑块尺寸为7013235mm。(2) 斜楔和滑块的尺寸设计 斜楔的有效行程S应大于滑块行程S1,滑块作水平运动的斜楔角度一般可取40。 滑块的长度尺寸L2应当保证当斜楔开始推动滑块时,推动的合力作用线处于滑块长度之内(如图4.6所示)。 合理的滑块高度H2应小于滑块长度L2,一般可取L2:H2=(21):1 为了保证滑块运动的平稳,滑块的宽度B2一般应小于或等于滑块的长度L2的2.5倍。 斜楔尺寸H1,L1基本上可按不同模具的结构要求 图4.6 滑块尺寸关系图进行设计,但必须有可靠的挡块,以保

35、证斜楔正常工作。 对于大型模具,滑块宽度B2与斜楔宽度B1及所需的斜楔数量可通过查文献11表14-40获得。 4.3.2 滑块返回行程的复位机构斜楔滑块在进行修边时,由于卸料力和滑块重力或其它因素所产生的力会把凸模卡住,工作完毕后,滑块不能自动回到初始位置,为了使滑块回到初始位置,必须设置复位机构。复位机构分为弹簧复位机构和返楔复位机构。返楔复位机构就是在压力机回程时靠返楔机构将滑块回到初始位置。本次零件复位机构的设计采用反楔复位机构,其特点就是结构紧凑,工作可靠。其结构简图如图4.7所示1滑块2调整块3防磨板4返楔块5返楔滑块6卸楔 图4.7 滑块复位机构4.3.3 出件装置的设计由于工件是

36、开口端朝下放在修边模上的,工作时压料板先压着工件,然后修边,工作后,工件留在凸模上,工件与凸模之间无任何间隙,而且有时候工件还被定位件卡的很紧,所以,工件取出很困难,如果取件方法不当,会使其变形,对下道工序产生影响,所以要使工件顺利取出,必须设置取件装置,本次设计是靠气缸推动推杆把工件推出。4.3.4 上模座的设计其结构如图4.8所示图4.8 上模座其中1的作用是装置限位器的限制压料板的下降位置,防止压料板掉下来碰伤工件或操作者。上模座的尺寸及材料为66046095mm HT2504.3.5 下模座的设计其结构如图4.9所示图4.9 下模座其中1、5是落废料的孔,即切掉的废料从1、5处落到下面

37、的废料盒内。3是用来定出托架,即顶出工件,2、4是作导向作用的。下模座的尺寸及材料为660460120mm HT2504.3.6 压料板的设计其结构如图4.10所示:图4.10 压料板其中,1是限制压料板的下降位置, 防止压料板掉下来碰伤工件或操作者。螺纹2的作用是当压料板装入或取出模具时的起吊装置,只要在1处装入起吊装置就可以了。4.3.7 防磨板的设计防磨板的作用主要是提高导向面的耐磨性,防磨板材料一般采用优质工具钢,本次设计的材料采用T8A,硬度为52-56HRC。其尺寸设计原则如下:防磨板宽度:导向面应选在被导向滑动零件轮廓的直线或最平滑的部位,一般取4-8处,且前后左右对称分布。防磨

38、板的总宽度应为内侧滑动零件轮廓全长的25以上,防磨板的总宽度决定后,需按比例配置在各导向部位。防磨板长度:防磨板的长度只能长,不能短。因为当上模下降接触毛坯之前要预先有一定的长度。防磨板的尺寸随零件的不同而不同,序号为04,其尺寸为251005mm,序号为08,尺寸为752228mm,序号为23,尺寸为25505mm,序号为35,尺寸为351005mm。4.3.8 导板的设计导板的作用是用于上下模的导向,所用材料为45钢,硬度为高频淬火HRC55,导板的尺寸为32508mm。4.4 模具闭合高度的计算H闭=H1+H2+H3=95+120+10= 225 mm其中H1是上模座的高度,H2是下模座

39、的高度,H3是斜楔行程。4.5 装配图及零件的图绘制在A1图纸上按比例1:1绘制装配图,在A4图纸上绘制零件图。 4.6 压力机校核表3.1 压力机的校核校核内容压力机参数 模具参数结论滑块行程315接近可以将零件放进取出闭合高度Hmax=490Hmin=490-310=180H=225满足工作台尺寸1000950下模座尺寸为660460满足要求设计总结转眼间三个月就过去了,经过这一段时间的毕业设计,我对冲压模具设计又有了一个新的认识,对冲压的了解又加深了一层,同时也对自己独立完成设计增加了一些经验,对以后走向工作岗位打下了坚实的基础。在本次设计中,通过查阅了大量的资料,我认识到自己对冲压是多

40、么的缺乏了解。更深一步的感受到冲压过程中的工艺分析是多么重要,在前面的几周内都是在做工件的工艺分析,当自己认为分析的已经足够,考虑的也足够详细了,可以进行设计了的时候,动起笔来,却不知从何下手,拉深过程中的起皱,拉裂怎样预防,怎样取出工件,加热的炉子应该放在哪里,等等很多问题都不知怎么解决。刚刚认为拉深模的设计可以告一段落时,却发现原本想好的修边模又出了问题,原本打算设计垂直斜楔修边复合模,却发现由于一开始没有考虑到尺寸相对于零件太大,设计出的模具达不到工件的精度要求,根本不能设计成复合模,所以又赶着修改修边模,所幸最后终于按时完成了设计。在设计过程中,拉深筋的位置和尺寸不能很精确的确定,因为它和拉深过程中的很多因素有关,并且有关拉深筋方面的文献资料相对比较少。虽然在冲压过程中拉深筋的有着举足轻重的作用,但是关于拉深筋的理论还很笼统,还不系统,没有非常精确的公式去计算,很多时候都是靠

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服