收藏 分销(赏)

环氧树脂的固化机理及其常用固化剂ppt.ppt

上传人:精**** 文档编号:2275072 上传时间:2024-05-24 格式:PPT 页数:47 大小:913KB
下载 相关 举报
环氧树脂的固化机理及其常用固化剂ppt.ppt_第1页
第1页 / 共47页
环氧树脂的固化机理及其常用固化剂ppt.ppt_第2页
第2页 / 共47页
环氧树脂的固化机理及其常用固化剂ppt.ppt_第3页
第3页 / 共47页
环氧树脂的固化机理及其常用固化剂ppt.ppt_第4页
第4页 / 共47页
环氧树脂的固化机理及其常用固化剂ppt.ppt_第5页
第5页 / 共47页
点击查看更多>>
资源描述

1、环氧树脂的固化剂,大致分为两类:环氧树脂的固化剂,大致分为两类:环氧树脂的固化剂,大致分为两类:环氧树脂的固化剂,大致分为两类:(1 1)反应型固化剂)反应型固化剂)反应型固化剂)反应型固化剂可与可与可与可与EPEP分子进行加成,并通过逐步聚合反应的历程使它交分子进行加成,并通过逐步聚合反应的历程使它交分子进行加成,并通过逐步聚合反应的历程使它交分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。联成体型网状结构。联成体型网状结构。联成体型网状结构。特征:一般都含有活泼氢原子,在反应过程中伴有氢原子特征:一般都含有活泼氢原子,在反应过程中伴有氢原子特征:一般都含有活泼氢原子,在反应过

2、程中伴有氢原子特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。如多元伯胺、多元羧酸、多元硫醇和多元酚等。的转移。如多元伯胺、多元羧酸、多元硫醇和多元酚等。的转移。如多元伯胺、多元羧酸、多元硫醇和多元酚等。的转移。如多元伯胺、多元羧酸、多元硫醇和多元酚等。(2 2)催化型固化剂)催化型固化剂)催化型固化剂)催化型固化剂可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。固化反应。固化反应。固化反应。如叔胺、咪唑、三氟化硼络合物等。

3、如叔胺、咪唑、三氟化硼络合物等。如叔胺、咪唑、三氟化硼络合物等。如叔胺、咪唑、三氟化硼络合物等。3.8环氧树脂通过逐步聚合反应的固化环氧树脂通过逐步聚合反应的固化 3.8.1脂肪族多元胺脂肪族多元胺 1、反应机理、反应机理如被酸促进(先形成氢键)如被酸促进(先形成氢键)催化剂(或促进剂):质子给予体催化剂(或促进剂):质子给予体促进顺序:酸促进顺序:酸酚酚水醇(催化效应近似正水醇(催化效应近似正比于酸度)比于酸度)三分子过渡状态使环氧基开环三分子过渡状态使环氧基开环形成三分子过渡状态(慢)形成三分子过渡状态(慢)质子转移(快)质子转移(快)2、常用固化剂、常用固化剂乙二胺乙二胺二乙烯三胺二乙烯

4、三胺三乙烯四胺三乙烯四胺四乙烯五胺四乙烯五胺多乙烯多胺多乙烯多胺试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?脂肪胺类固化剂的特点脂肪胺类固化剂的特点(1)活性高,可室温固化。)活性高,可室温固化。(2)反应剧烈放热,适用期短;)反应剧烈放热,适用期短;(3)一般需后固化。室温固化)一般需后固化。室温固化7d左右,再经左右,再经2h/80100后固化,性能更好;后固化,性能更好;(4)固化物的热变形温度较低,一般为)固化物的热变形温度较低,一般为8090;(5)固化物脆性较大;)固化物脆性较大;(6)挥发性和毒性较大。)挥发性和毒性

5、较大。1 1、海因环氧树脂的结构式与主要性能特点?、海因环氧树脂的结构式与主要性能特点?、海因环氧树脂的结构式与主要性能特点?、海因环氧树脂的结构式与主要性能特点?2 2、二氧化双环戊二烯基醚环氧树脂的特点?、二氧化双环戊二烯基醚环氧树脂的特点?、二氧化双环戊二烯基醚环氧树脂的特点?、二氧化双环戊二烯基醚环氧树脂的特点?3 3、TDE-85TDE-85环氧树脂的结构式与性能特点?环氧树脂的结构式与性能特点?环氧树脂的结构式与性能特点?环氧树脂的结构式与性能特点?4 4、脂肪族环氧树脂的特点及用途?、脂肪族环氧树脂的特点及用途?、脂肪族环氧树脂的特点及用途?、脂肪族环氧树脂的特点及用途?5.5.

6、有机硅环氧树脂的特点?有机硅环氧树脂的特点?有机硅环氧树脂的特点?有机硅环氧树脂的特点?6 6、环氧树脂的固化剂可分为哪两类,分别按什么反、环氧树脂的固化剂可分为哪两类,分别按什么反、环氧树脂的固化剂可分为哪两类,分别按什么反、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化应历程进行固化应历程进行固化应历程进行固化?特点是什么?两类固化剂的代表特点是什么?两类固化剂的代表特点是什么?两类固化剂的代表特点是什么?两类固化剂的代表有哪些?有哪些?有哪些?有哪些?7 7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序、脂肪族多元胺固化剂的催化剂有哪些?活性顺序、脂肪族多元胺固化剂的催化剂有哪些

7、?活性顺序、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的?是怎样的?是怎样的?是怎样的?8 8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构、常用的脂肪族多元胺有哪些?多乙烯多胺的结构、常用的脂肪族多元胺有哪些?多乙烯多胺的结构、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序?通式?它们的活性与挥发性相对大小顺序?通式?它们的活性与挥发性相对大小顺序?通式?它们的活性与挥发性相对大小顺序?9 9、脂肪族多元胺类环氧固化剂的主要特点有哪些?、脂肪族多元胺类环氧固化剂的主要特点有哪些?、脂肪族多元胺类环氧固化剂的主要特点有哪些?、脂肪族多元胺类环氧固化剂的主要特

8、点有哪些?课前回顾课前回顾3、化学计量化学计量胺的用量(胺的用量(phr)=胺当量胺当量环氧值环氧值胺当量胺当量=胺的相对分子量胺的相对分子量胺中活泼氢的个数胺中活泼氢的个数phr意义:每意义:每100份树脂所需固化剂的质量份数。份树脂所需固化剂的质量份数。例题:分别用二乙烯三胺和四乙烯五胺固化例题:分别用二乙烯三胺和四乙烯五胺固化E-44环氧树脂,试计算固化剂的用量(环氧树脂,试计算固化剂的用量(phr值)。值)。若若E-44用用10%的丙酮或者的丙酮或者669(环氧值为(环氧值为0.75)稀)稀释后(质量比为释后(质量比为100:10),又如何计算),又如何计算?胺当量(胺当量(胺当量(胺

9、当量(DETADETA)=103/5=20.6=103/5=20.6胺当量(胺当量(胺当量(胺当量(TEPATEPA)=189/7=27=189/7=27(1 1)未稀释,环氧值)未稀释,环氧值)未稀释,环氧值)未稀释,环氧值=0.44=0.44PhrPhr(DETADETA)=0.4420.6=9.1=0.4420.6=9.1PhrPhr(TEPATEPA)=0.4427=11.9=0.4427=11.9(2 2)用丙酮稀释,)用丙酮稀释,)用丙酮稀释,)用丙酮稀释,环氧值环氧值环氧值环氧值=0.44100/110=0.4=0.44100/110=0.4PhrPhr(DETADETA)=0.

10、420.6=8.2=0.420.6=8.2PhrPhr(TEPATEPA)=0.427=10.8=0.427=10.8用用用用669669稀释,稀释,稀释,稀释,环氧值环氧值环氧值环氧值=0.44100/110+0.7510/110=0.468=0.44100/110+0.7510/110=0.468PhrPhr(DETADETA)=0.46820.6=9.6=0.46820.6=9.6PhrPhr(TEPATEPA)=0.46827=12.6=0.46827=12.63.8.2芳香族多元胺芳香族多元胺间苯二胺间苯二胺4,4二胺基二苯基甲烷(二胺基二苯基甲烷(DDM)间苯二甲胺间苯二甲胺4,4

11、二胺基二苯砜二胺基二苯砜(DDS)芳族多元胺固化剂的特点芳族多元胺固化剂的特点优点:固化物耐热性、耐化学性、机械强度均比优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。(分子中含一个或多个苯环)脂肪族多元胺好。(分子中含一个或多个苯环)缺点:缺点:(1)活性低,大多需加热后固化。)活性低,大多需加热后固化。原因:与脂肪族多元胺相比,氮原子上电子云密原因:与脂肪族多元胺相比,氮原子上电子云密度降低,使得碱性减弱,同时还有苯环的位阻效度降低,使得碱性减弱,同时还有苯环的位阻效应;应;(2)大多为固体,其熔点较高,工艺性较差。)大多为固体,其熔点较高,工艺性较差。芳香胺的液化芳香胺的液化(

12、1)低共熔点混合法。)低共熔点混合法。这是最简单的改性方法。将两种或两种以上不同熔这是最简单的改性方法。将两种或两种以上不同熔点的芳香胺按一定比例加热混熔成低共熔点混合物或点的芳香胺按一定比例加热混熔成低共熔点混合物或液体。通常将液体。通常将6075%(质量分数)(质量分数)MPD与与4025%的的DDM混合熔融,混合物在常温下为液体;混合熔融,混合物在常温下为液体;(2)芳族多元胺与单缩水甘油醚反应生成液态加成)芳族多元胺与单缩水甘油醚反应生成液态加成物。物。如如590固化剂,固化剂,MPD+苯基缩水甘油醚,反应得到棕苯基缩水甘油醚,反应得到棕黑色粘稠液体。黑色粘稠液体。间苯二胺(间苯二胺(

13、MPD)性态:无色或淡黄色结晶,熔点性态:无色或淡黄色结晶,熔点63,空气中放置容,空气中放置容易氧化成黑色;易氧化成黑色;特点:特点:(1)适用期较脂肪族胺要长。)适用期较脂肪族胺要长。2.5h/50g(50);(2)固化物耐热性较好。)固化物耐热性较好。HDT可达可达150(2h/80+2h/150)(3)一般不直接使用,作为改性胺的原料。)一般不直接使用,作为改性胺的原料。二氨基二苯甲烷(二氨基二苯甲烷(DDM)性态:白色结晶,熔点性态:白色结晶,熔点89,在日光下长时间暴露,在日光下长时间暴露也会变成黑色;也会变成黑色;特点:特点:(1)反应活性比)反应活性比MPD低;低;(2)热稳定

14、性好,固化物即使在高温下也保持良好)热稳定性好,固化物即使在高温下也保持良好的力学性能与电性能;的力学性能与电性能;(3)主要用于浇铸、层压配方中。)主要用于浇铸、层压配方中。二氨基二苯基砜(二氨基二苯基砜(DDS)性态:浅黄色粉末,熔点性态:浅黄色粉末,熔点178,暴露于空气或见光,暴露于空气或见光会氧化变成淡红色;会氧化变成淡红色;特点:特点:(1)活性在芳香胺中最低。(砜基的吸电子效应)活性在芳香胺中最低。(砜基的吸电子效应)无促进剂,最终固化温度高达无促进剂,最终固化温度高达175200;(2)固化物高耐热,在所有胺类固化剂中)固化物高耐热,在所有胺类固化剂中HDT最高。最高。如固化如

15、固化E型环氧的型环氧的HDT可达可达193;(3)适用于耐热胶粘剂及耐热层压材料。)适用于耐热胶粘剂及耐热层压材料。间苯二甲二胺(间苯二甲二胺(mXDA)性态:无色至黄色透明液体,凝固点性态:无色至黄色透明液体,凝固点12;特点:特点:(1)活性在芳香族胺中最高。(苯环侧链上有脂肪)活性在芳香族胺中最高。(苯环侧链上有脂肪族伯胺氢原子,活性同脂肪族多元胺,室温固化)族伯胺氢原子,活性同脂肪族多元胺,室温固化)(2)固化物耐热性介于脂肪族胺与芳香族胺之间)固化物耐热性介于脂肪族胺与芳香族胺之间;(3)蒸汽压低,毒性较大。)蒸汽压低,毒性较大。(4)易吸收空气中的)易吸收空气中的CO2形成氨基甲酸

16、盐,固化时受形成氨基甲酸盐,固化时受热分解产生热分解产生CO2,使制品起泡而影响性能。,使制品起泡而影响性能。改性多元胺的制备方法改性多元胺的制备方法(1)环氧化合物加成多胺)环氧化合物加成多胺由单或双环氧化合物与过量多元胺反应制得。由单或双环氧化合物与过量多元胺反应制得。反应式如下:反应式如下:由于加成物的分子量变大,沸点与粘度增加,因此由于加成物的分子量变大,沸点与粘度增加,因此挥发性与毒性减弱;同时改善了原有脂肪胺固化物的挥发性与毒性减弱;同时改善了原有脂肪胺固化物的脆性。(代表产品,脆性。(代表产品,593固化剂:固化剂:DETA+660)(2)迈克尔加成多元胺)迈克尔加成多元胺由丙烯

17、腈与多元胺进行加成反应制得。由丙烯腈与多元胺进行加成反应制得。胺的活泼氢对胺的活泼氢对、不饱和键能迅速起加成反应,该不饱和键能迅速起加成反应,该反应称为迈克尔反应(反应称为迈克尔反应(Michaclreaction),特别是丙特别是丙烯腈的加成反应生成腈乙基化物在降低反应活性,改烯腈的加成反应生成腈乙基化物在降低反应活性,改善与善与EP的相容性方面特别有效。的相容性方面特别有效。典型反应如下:典型反应如下:(3)曼尼斯加成多元胺)曼尼斯加成多元胺由多元胺和甲醛、苯酚的缩合反应制得。由多元胺和甲醛、苯酚的缩合反应制得。曼尼斯反应(曼尼斯反应(Mannichreaction)为多元胺、甲醛、)为多

18、元胺、甲醛、苯酚的三分子缩合反应。典型反应如下:苯酚的三分子缩合反应。典型反应如下:特点:产物能在低温、潮湿、水下施工固化特点:产物能在低温、潮湿、水下施工固化EP。典型产品:典型产品:T-31,最简单是由二乙烯三胺,最简单是由二乙烯三胺+甲醛甲醛+苯酚苯酚适宜在土木工程中应用,用于混凝土石料、钢材、瓷适宜在土木工程中应用,用于混凝土石料、钢材、瓷砖等材料之间的粘接、嵌缝,建筑物、桥梁、隧道、砖等材料之间的粘接、嵌缝,建筑物、桥梁、隧道、公路的快速修复与加固。公路的快速修复与加固。(4)硫脲)硫脲-多元胺缩合物多元胺缩合物由多元胺和硫脲反应制得,为低温固化剂。由多元胺和硫脲反应制得,为低温固化

19、剂。硫脲和脂肪族多元胺在加热到硫脲和脂肪族多元胺在加热到100以上,进行以上,进行缩合反应放出氨气,生成缩合物:缩合反应放出氨气,生成缩合物:特点:能在极低的温度下(特点:能在极低的温度下(0以下)固化以下)固化EP。1 1、芳香胺类固化剂的主要优点与缺点?、芳香胺类固化剂的主要优点与缺点?、芳香胺类固化剂的主要优点与缺点?、芳香胺类固化剂的主要优点与缺点?2 2、芳香胺的液化方法有哪些?、芳香胺的液化方法有哪些?、芳香胺的液化方法有哪些?、芳香胺的液化方法有哪些?3 3、芳香胺活性低的原因?、芳香胺活性低的原因?、芳香胺活性低的原因?、芳香胺活性低的原因?4 4、DDMDDM的结构式与特点?

20、的结构式与特点?的结构式与特点?的结构式与特点?5 5、DDSDDS的结构式与特点?的结构式与特点?的结构式与特点?的结构式与特点?6 6、mXDAmXDA 的结构式与特点?的结构式与特点?的结构式与特点?的结构式与特点?7 7、能降低胺类固化剂活性的改性方法有哪些,反应、能降低胺类固化剂活性的改性方法有哪些,反应、能降低胺类固化剂活性的改性方法有哪些,反应、能降低胺类固化剂活性的改性方法有哪些,反应原理是怎样的?原理是怎样的?原理是怎样的?原理是怎样的?8 8、能提高胺类固化剂活性的改性方法有哪些,反应、能提高胺类固化剂活性的改性方法有哪些,反应、能提高胺类固化剂活性的改性方法有哪些,反应、

21、能提高胺类固化剂活性的改性方法有哪些,反应原理?原理?原理?原理?9 9、590590、593593与与与与T-31T-31固化剂的合成原理?固化剂的合成原理?固化剂的合成原理?固化剂的合成原理?课前回顾课前回顾3.8.3聚酰胺聚酰胺9,11-亚油酸与亚油酸与9,12-亚油酸二聚反应亚油酸二聚反应然后与然后与2分子分子DETA进行酰胺化反应进行酰胺化反应聚酰胺固化剂的特点聚酰胺固化剂的特点(1)挥发性和毒性很小;)挥发性和毒性很小;(2)与)与EP相容性良好;相容性良好;(3)化学计量要求不严,用量可在)化学计量要求不严,用量可在40100phr间变化;间变化;(4)对固化物有很好的增韧效果;

22、)对固化物有很好的增韧效果;(5)放热效应低,适用期较长。)放热效应低,适用期较长。缺点:缺点:固化物的耐热性较低,固化物的耐热性较低,HDT为为60左右。左右。3.8.4多元硫醇多元硫醇类似羟基,巯基基团(类似羟基,巯基基团(-SH)也可与环氧基反应,)也可与环氧基反应,生成含仲羟基和硫醚键的产物。生成含仲羟基和硫醚键的产物。聚硫醇化合物(如液体聚硫橡胶)就是典型的多聚硫醇化合物(如液体聚硫橡胶)就是典型的多元硫醇,在单独使用时活性很低,在室温下反应极元硫醇,在单独使用时活性很低,在室温下反应极其缓慢,几乎不能进行;在有适当催化剂作用下,其缓慢,几乎不能进行;在有适当催化剂作用下,固化反应以

23、数倍多元胺的速度进行,这个特点在低固化反应以数倍多元胺的速度进行,这个特点在低温固化时更明显。温固化时更明显。DMP-30用量对多元硫醇用量对多元硫醇/EP凝胶时间的影响凝胶时间的影响DMP-30DMP-30用量(用量(用量(用量(phrphr)凝胶时间凝胶时间凝胶时间凝胶时间0 01000h1000h0.250.2512h12h1.01.01.2h1.2h2.02.030min30min3.03.015min15min10.010.01min1min多元酸:也可固化多元酸:也可固化多元酸:也可固化多元酸:也可固化EPEP,但反应速度很慢,由于不能生成高,但反应速度很慢,由于不能生成高,但反应

24、速度很慢,由于不能生成高,但反应速度很慢,由于不能生成高交联度高产物,因此不能作为固化剂之用。交联度高产物,因此不能作为固化剂之用。交联度高产物,因此不能作为固化剂之用。交联度高产物,因此不能作为固化剂之用。多元羧酸酐特点:多元羧酸酐特点:多元羧酸酐特点:多元羧酸酐特点:(1 1)低挥发性、毒性小,对皮肤基本没有刺激性;)低挥发性、毒性小,对皮肤基本没有刺激性;)低挥发性、毒性小,对皮肤基本没有刺激性;)低挥发性、毒性小,对皮肤基本没有刺激性;(2 2)固化反应缓慢,放热量小,适用期长;)固化反应缓慢,放热量小,适用期长;)固化反应缓慢,放热量小,适用期长;)固化反应缓慢,放热量小,适用期长;

25、(3 3)固化产物收缩率低、耐热性高;)固化产物收缩率低、耐热性高;)固化产物收缩率低、耐热性高;)固化产物收缩率低、耐热性高;(4 4)固化产物的机械强度高、电性能优良。)固化产物的机械强度高、电性能优良。)固化产物的机械强度高、电性能优良。)固化产物的机械强度高、电性能优良。缺点:需加热固化,固化周期较长。缺点:需加热固化,固化周期较长。缺点:需加热固化,固化周期较长。缺点:需加热固化,固化周期较长。作为作为作为作为EPEP常用固化剂,其重要性仅次于多元胺类固化剂。常用固化剂,其重要性仅次于多元胺类固化剂。常用固化剂,其重要性仅次于多元胺类固化剂。常用固化剂,其重要性仅次于多元胺类固化剂。

26、3.8.5酸酐类固化剂酸酐类固化剂 1、反应机理、反应机理生成含酯链的羧酸生成含酯链的羧酸生成带羟基的二酯生成带羟基的二酯环氧基与新生成或已存在羟基发生醚化反应环氧基与新生成或已存在羟基发生醚化反应可被可被路易士碱(如路易士碱(如叔胺)促进叔胺)促进生成羧酸盐阴离子生成羧酸盐阴离子生成氧阴离子生成氧阴离子氧阴离子与酸酐反应生成酯化结构氧阴离子与酸酐反应生成酯化结构也可被路易士酸(如三氟化硼)促进也可被路易士酸(如三氟化硼)促进也可被路易士酸(如三氟化硼)促进也可被路易士酸(如三氟化硼)促进生成酯化结构生成酯化结构催化剂直接影响两个竞争反应,即酯化反应与醚化催化剂直接影响两个竞争反应,即酯化反应

27、与醚化反应。故有无催化剂,酸酐固化反应。故有无催化剂,酸酐固化EP的性能有差异,添的性能有差异,添加催化剂的性能要好。加催化剂的性能要好。主要品种主要品种 活性顺序:顺酐苯酐四氢苯酐甲基四氢苯活性顺序:顺酐苯酐四氢苯酐甲基四氢苯活性顺序:顺酐苯酐四氢苯酐甲基四氢苯活性顺序:顺酐苯酐四氢苯酐甲基四氢苯酐酐酐酐 酸酐分子结构中若有负电性取代基,则反应活性增强。酸酐分子结构中若有负电性取代基,则反应活性增强。酸酐分子结构中若有负电性取代基,则反应活性增强。酸酐分子结构中若有负电性取代基,则反应活性增强。MAMAPAPATHPATHPAMeTHPAMeTHPAHHPAHHPAMeHHPAMeHHPA甲

28、基纳迪克酸酐甲基纳迪克酸酐六氯内次甲基邻苯二甲六氯内次甲基邻苯二甲酸酐:氯桥酸酐酸酐:氯桥酸酐(CA)均苯四甲酸二酐均苯四甲酸二酐熔点:熔点:286与二元醇反应生成与二元醇反应生成酸性酯酐酸性酯酐1 1、聚酰胺固化剂的合成原理与性能特点?、聚酰胺固化剂的合成原理与性能特点?、聚酰胺固化剂的合成原理与性能特点?、聚酰胺固化剂的合成原理与性能特点?2 2、多元硫醇固化剂有何特点?、多元硫醇固化剂有何特点?、多元硫醇固化剂有何特点?、多元硫醇固化剂有何特点?3 3、酸酐类固化剂固化、酸酐类固化剂固化、酸酐类固化剂固化、酸酐类固化剂固化EPEP的主要特点?的主要特点?的主要特点?的主要特点?4 4、酸

29、酐固化、酸酐固化、酸酐固化、酸酐固化EPEP的反应机理(有无促进剂的区别)?的反应机理(有无促进剂的区别)?的反应机理(有无促进剂的区别)?的反应机理(有无促进剂的区别)?5 5、常用酸酐类固化剂有哪些,性状与活性如何?、常用酸酐类固化剂有哪些,性状与活性如何?、常用酸酐类固化剂有哪些,性状与活性如何?、常用酸酐类固化剂有哪些,性状与活性如何?6 6、影响酸酐类固化剂活性的因素?、影响酸酐类固化剂活性的因素?、影响酸酐类固化剂活性的因素?、影响酸酐类固化剂活性的因素?7 7、均苯四甲酸二酐的性状与使用方法?、均苯四甲酸二酐的性状与使用方法?、均苯四甲酸二酐的性状与使用方法?、均苯四甲酸二酐的性

30、状与使用方法?课前回顾课前回顾氯茵酸酐(氯茵酸酐(氯茵酸酐(氯茵酸酐(HETHET)又称氯桥酸酐()又称氯桥酸酐()又称氯桥酸酐()又称氯桥酸酐(CACA),全称:六氯),全称:六氯),全称:六氯),全称:六氯内次甲基四氢邻苯二甲酸酐。分子量内次甲基四氢邻苯二甲酸酐。分子量内次甲基四氢邻苯二甲酸酐。分子量内次甲基四氢邻苯二甲酸酐。分子量370.9370.9,白色晶粉末,白色晶粉末,白色晶粉末,白色晶粉末,熔点熔点熔点熔点231231235235。溶于丙酮、苯,微溶于正已烷、四氯化。溶于丙酮、苯,微溶于正已烷、四氯化。溶于丙酮、苯,微溶于正已烷、四氯化。溶于丙酮、苯,微溶于正已烷、四氯化碳。在水

31、中水解为氯桥酸。碳。在水中水解为氯桥酸。碳。在水中水解为氯桥酸。碳。在水中水解为氯桥酸。用作环氧树脂的固化剂,参考用量用作环氧树脂的固化剂,参考用量用作环氧树脂的固化剂,参考用量用作环氧树脂的固化剂,参考用量100100110phr110phr。固化。固化。固化。固化条件:条件:条件:条件:l00l002h2h十十十十1601604h4h或或或或1201202h2h十十十十1801802h2h或或或或1001001h1h十十十十1601604h4h十十十十2002001h1h。固化物具有优良。固化物具有优良。固化物具有优良。固化物具有优良的阻燃性、电性能和机械性能。热变形温度的阻燃性、电性能和

32、机械性能。热变形温度的阻燃性、电性能和机械性能。热变形温度的阻燃性、电性能和机械性能。热变形温度181181。常用的促进剂品种常用的促进剂品种常用的促进剂品种常用的促进剂品种苄基二甲胺苄基二甲胺2乙基乙基4甲基咪唑甲基咪唑2-甲基咪唑甲基咪唑DMP-10DMP-20DMP-30二甲胺基甲酚二甲胺基甲酚化学计量化学计量酸酐的用量(酸酐的用量(phr)=酸酐当量酸酐当量环氧值环氧值C酸酐当量酸酐当量=酸酐的相对分子量酸酐的相对分子量酸酐个数酸酐个数一般酸酐:一般酸酐:C=0.85含卤素酸酐:含卤素酸酐:C=0.60叔胺促进:叔胺促进:C=1.0例题:用甲基四氢邻苯二甲酸酐(分子量为例题:用甲基四氢

33、邻苯二甲酸酐(分子量为例题:用甲基四氢邻苯二甲酸酐(分子量为例题:用甲基四氢邻苯二甲酸酐(分子量为166166)作为固化剂固化环氧树脂:作为固化剂固化环氧树脂:作为固化剂固化环氧树脂:作为固化剂固化环氧树脂:(1 1)E-51E-51环氧中添加环氧中添加环氧中添加环氧中添加10%10%的的的的TDE-85TDE-85环氧树脂环氧树脂环氧树脂环氧树脂(E-51E-51与与与与TDE-85TDE-85的质量比为的质量比为的质量比为的质量比为1010:1 1),用叔胺),用叔胺),用叔胺),用叔胺DMP-30DMP-30作催化剂;(作催化剂;(作催化剂;(作催化剂;(TDE-85TDE-85的环氧值

34、为的环氧值为的环氧值为的环氧值为0.850.85)(2 2)E-51E-51环氧中添加环氧中添加环氧中添加环氧中添加20%20%的的的的TDE-85TDE-85环氧树脂环氧树脂环氧树脂环氧树脂(E-51E-51与与与与TDE-85TDE-85的质量比为的质量比为的质量比为的质量比为5 5:1 1),不加任何催),不加任何催),不加任何催),不加任何催化剂。化剂。化剂。化剂。计算上述二种树脂体系所需固化剂的计算上述二种树脂体系所需固化剂的计算上述二种树脂体系所需固化剂的计算上述二种树脂体系所需固化剂的phrphr值(结值(结值(结值(结果保留一位小数)。果保留一位小数)。果保留一位小数)。果保留

35、一位小数)。酸酐当量酸酐当量166/1166(1)环氧值)环氧值0.5110/110.851/110.54phr1660.54189.6(2)环氧值)环氧值0.515/60.851/60.57phr1660.570.8580.4 催化性固化剂:仅仅起固化反应的催化作用,该类催化性固化剂:仅仅起固化反应的催化作用,该类催化性固化剂:仅仅起固化反应的催化作用,该类催化性固化剂:仅仅起固化反应的催化作用,该类物质主要是引发树脂分子中环氧基的开环聚合反应,物质主要是引发树脂分子中环氧基的开环聚合反应,物质主要是引发树脂分子中环氧基的开环聚合反应,物质主要是引发树脂分子中环氧基的开环聚合反应,从而交联成

36、体型结构的高聚物,本身并不参与到交联从而交联成体型结构的高聚物,本身并不参与到交联从而交联成体型结构的高聚物,本身并不参与到交联从而交联成体型结构的高聚物,本身并不参与到交联网络中去。网络中去。网络中去。网络中去。该类固化剂用量主要凭经验,由实验来决定。该类固化剂用量主要凭经验,由实验来决定。该类固化剂用量主要凭经验,由实验来决定。该类固化剂用量主要凭经验,由实验来决定。该类固化剂可使树脂分子按阴离子型聚合反应历程该类固化剂可使树脂分子按阴离子型聚合反应历程该类固化剂可使树脂分子按阴离子型聚合反应历程该类固化剂可使树脂分子按阴离子型聚合反应历程(用路易斯碱)或按阳离子聚合物反应(用路易斯酸)(

37、用路易斯碱)或按阳离子聚合物反应(用路易斯酸)(用路易斯碱)或按阳离子聚合物反应(用路易斯酸)(用路易斯碱)或按阳离子聚合物反应(用路易斯酸)进行固化。进行固化。进行固化。进行固化。3.9环氧树脂通过离子型聚合反应的固化环氧树脂通过离子型聚合反应的固化3.9.1阴离子型固化剂阴离子型固化剂1 1、反应机理、反应机理 叔胺引发环氧基开环,形成氧阴离子活性中心。叔胺引发环氧基开环,形成氧阴离子活性中心。叔胺引发环氧基开环,形成氧阴离子活性中心。叔胺引发环氧基开环,形成氧阴离子活性中心。氧阴离子再与另一树脂分子中的环氧基反应,使分子链增长。氧阴离子再与另一树脂分子中的环氧基反应,使分子链增长。氧阴离

38、子再与另一树脂分子中的环氧基反应,使分子链增长。氧阴离子再与另一树脂分子中的环氧基反应,使分子链增长。一般都是路易士碱类化合物一般都是路易士碱类化合物继续进行下去,使许多树脂分子交联在一起形成体型高聚物。继续进行下去,使许多树脂分子交联在一起形成体型高聚物。继续进行下去,使许多树脂分子交联在一起形成体型高聚物。继续进行下去,使许多树脂分子交联在一起形成体型高聚物。链终止可能是由于叔胺的端基消除,并形成双键端基。链终止可能是由于叔胺的端基消除,并形成双键端基。链终止可能是由于叔胺的端基消除,并形成双键端基。链终止可能是由于叔胺的端基消除,并形成双键端基。苄基二甲胺苄基二甲胺2乙基乙基4甲基咪唑甲

39、基咪唑2-甲基咪唑甲基咪唑DMP-10DMP-20DMP-30二甲胺基甲酚二甲胺基甲酚2、常用阴离子型固化剂、常用阴离子型固化剂(1 1)叔胺类固化剂)叔胺类固化剂)叔胺类固化剂)叔胺类固化剂多用多用多用多用DMP-10DMP-10与与与与DMP-30,DMP-30,特别是特别是特别是特别是DMP-30DMP-30,因酚羟基能,因酚羟基能,因酚羟基能,因酚羟基能够显著加速树脂的固化速率。固化够显著加速树脂的固化速率。固化够显著加速树脂的固化速率。固化够显著加速树脂的固化速率。固化E E型环氧的用量为型环氧的用量为型环氧的用量为型环氧的用量为5-5-10phr10phr,放热量很大,适用期短(,

40、放热量很大,适用期短(,放热量很大,适用期短(,放热量很大,适用期短(0.5-1h0.5-1h),可使),可使),可使),可使EPEP快快快快速固化(速固化(速固化(速固化(24h/2524h/25)。)。)。)。(2 2)咪唑类固化剂)咪唑类固化剂)咪唑类固化剂)咪唑类固化剂多用液态的多用液态的多用液态的多用液态的2-2-乙基乙基乙基乙基-4-4-甲基咪唑。固化甲基咪唑。固化甲基咪唑。固化甲基咪唑。固化E E型环氧的用量型环氧的用量型环氧的用量型环氧的用量为为为为3-4phr3-4phr,适用期较长(,适用期较长(,适用期较长(,适用期较长(8-10h8-10h),特点是能在中温下),特点是

41、能在中温下),特点是能在中温下),特点是能在中温下固化,获得较高的热变形温度,达到与芳香胺固化产物固化,获得较高的热变形温度,达到与芳香胺固化产物固化,获得较高的热变形温度,达到与芳香胺固化产物固化,获得较高的热变形温度,达到与芳香胺固化产物相当的耐热水平(相当的耐热水平(相当的耐热水平(相当的耐热水平(160160)。)。)。)。交联反应可通过仲胺基上的活泼氢和叔胺的催化交联反应可通过仲胺基上的活泼氢和叔胺的催化交联反应可通过仲胺基上的活泼氢和叔胺的催化交联反应可通过仲胺基上的活泼氢和叔胺的催化作用引发作用,较其他的催化型固化剂有较快的固化速作用引发作用,较其他的催化型固化剂有较快的固化速作

42、用引发作用,较其他的催化型固化剂有较快的固化速作用引发作用,较其他的催化型固化剂有较快的固化速度和较高的固化程度。度和较高的固化程度。度和较高的固化程度。度和较高的固化程度。3.9.2阳离子型固化剂阳离子型固化剂一般都是路易士酸类化合物一般都是路易士酸类化合物1 1、反应机理、反应机理阳离子活性中心阳离子活性中心键终止反应可能在于离子对的复合键终止反应可能在于离子对的复合 路易斯酸:如路易斯酸:如路易斯酸:如路易斯酸:如BFBF3 3、SnClSnCl4 4、AlClAlCl3 3等,为电子接等,为电子接等,为电子接等,为电子接受体物质;受体物质;受体物质;受体物质;使用最多的是使用最多的是使

43、用最多的是使用最多的是BFBF3 3,它是一种有腐蚀性的气体,它是一种有腐蚀性的气体,它是一种有腐蚀性的气体,它是一种有腐蚀性的气体,反应活性非常高,能使反应活性非常高,能使反应活性非常高,能使反应活性非常高,能使EPEP在室温下数十秒内固化,在室温下数十秒内固化,在室温下数十秒内固化,在室温下数十秒内固化,故不能单独作为固化剂;故不能单独作为固化剂;故不能单独作为固化剂;故不能单独作为固化剂;常用其与胺类或醚类的络合物,工业上最常用常用其与胺类或醚类的络合物,工业上最常用常用其与胺类或醚类的络合物,工业上最常用常用其与胺类或醚类的络合物,工业上最常用的是三氟化硼的是三氟化硼的是三氟化硼的是三氟化硼-乙胺络合物,又称乙胺络合物,又称乙胺络合物,又称乙胺络合物,又称BFBF3 3:400:400。为熔点。为熔点。为熔点。为熔点8787的结晶物质,在室温下稳定,离解温度约的结晶物质,在室温下稳定,离解温度约的结晶物质,在室温下稳定,离解温度约的结晶物质,在室温下稳定,离解温度约9090,在高温下离解后,活性增大。,在高温下离解后,活性增大。,在高温下离解后,活性增大。,在高温下离解后,活性增大。常用阳离子型固化剂常用阳离子型固化剂

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服