收藏 分销(赏)

函数的定义域和值域-PPT.ppt

上传人:精**** 文档编号:2269313 上传时间:2024-05-24 格式:PPT 页数:32 大小:180KB
下载 相关 举报
函数的定义域和值域-PPT.ppt_第1页
第1页 / 共32页
函数的定义域和值域-PPT.ppt_第2页
第2页 / 共32页
函数的定义域和值域-PPT.ppt_第3页
第3页 / 共32页
函数的定义域和值域-PPT.ppt_第4页
第4页 / 共32页
函数的定义域和值域-PPT.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、第二节 函数的定义域、值域1求函数的定义域 求下列函数的定义域(1)y ;(2)y (5x4)0;(3)y lgcosx.2分析依据解析式的限制条件,列出不等式组求解3解(1)由 得函数的定义域为(,2)(2,11,2)(2,)(2)由 得函数的定义域为 .(3)由 得函数的定义域为 .4规律总结(1)给定函数的解析式,求函数的定义域的依据是基本代数式有意义(2)求函数定义域往往归纳为解不等式组问题,在解不等式组时要细心,取交集可借助数轴,并且要注意端点值或边界值(3)定义域必须用集合或区间表示5变式训练1 下列函数中,与函数y 有相同定义域的是()Af(x)lnx Bf(x)Cf(x)|x|

2、Df(x)ex6【解析】y 的定义域为x|x0,故选A.【答案】A7已知函数f(x)的定义域为0,1,求下列函数的定义域(1)f(x2);(2)f(x21)8大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点9分析f(x2)中的x2与f(x)中的x取相同范围的值f(x2)的自变量为x.10解(1)f(x)的定义域是0,1,要使f(x2)有意义,则必有0 x21,解得1x1,f(x2)的定义域为1,1(2)由0 x211,得1x22,f(x21)的定义域为 ,11,11规律总结若已知f(

3、x)的定义域求复合函数f(x)的定义域,可将f(x)的定义域写成关于x的不等式,然后将x换成中间变量(x),再解不等式即可得到f(x)的定义域;若已知复合函数fg(x)的定义域求f(x)的定义域,可令tg(x),由x的范围求出t的范围,再以x换t即得f(x)的定义域,就是求g(x)的值域12变式训练设f(x)lg ,则f f 的定义域为()A(4,0)(0,4)B(4,1)(1,4)C(2,1)(1,2)D(4,2)(2,4)13【解析】由 0,得(x2)(x2)0,即2x2.4x1或1x4,函数定义域为(4,1)(1,4)【答案】B14求函数的值域(1)求函数y2 的值域;(2)若函数yf(

4、x)的值域是 ,求函数F(x)f(x)的值域15分析(1)形如二次三项式ax2bxc形式用配方法(2)运用函数的单调性求值域16解(1)y2 2 ,其定义域为x|0 x4,而0 2,0y2,函数值域为0,2(2)令f(x)t,则F(x)t ,t ,F(x)1 .当t 时,F(x)是减函数,2F(x);当t1,3时,F(x)是增函数,2F(x).F(x)的值域为 .17规律总结求函数值域的基本方法有配方法、不等式法、单调性法、数形结合等,了解每种方法的适用范围,根据函数类型适当选择灵活运用各种方法18变式训练函数f(x)的值域是()A.B.1,)C.DR19【解析】f(x)1 ,1sinx1,1

5、2sinx3,2,f(x).【答案】C20综合运用(12分)已知集合A2,a(a2),定义域为A的函数f(x)x2的值域为B;定义域为A的函数g(x)2x3的值域为C.是否存在实数a,使得B是C的子集?如果存在,求出a的取值范围;如果不存在,说明理由 21分析探索性问题按存在求解,g(x)值域确定,f(x)的值域不确定,须讨论22解当x2,a时,由于g(x)2x3,所以函数g(x)的值域为C1,2a3.2分当2a0时,Ba2,4由于BC,则2a34,此时a 不成立;5分当0a2时,B0,4由于BC,则2a34,此时a ,所以 a2;8分当a2时,B0,a2由于BC,则2a3a2,此时1a3,解

6、得2a3.11分综上,满足条件的a的取值范围为 a3.12分23规律总结分类讨论问题,首先搞清讨论的标准是什么,做到不重不漏,条理清楚最后,注意结果是取并还是取交24变式训练函数ylog3(9x2)的定义域为A,值域为B,则AB_.25【解析】由9x20,得3x3,A(3,3),由09x29,得y2,B(,2,AB(3,2【答案】(3,226函数的定义域和值域是函数的基本要素,要优先考虑函数的定义域,不能忽视1求函数的定义域一般有三种类型:第一种是给出函数解析式求其定义域,此时即求使解析式有意义的自变量的取值集合;第二种是不给出函数f(x)的解析式,而由f(x)的定义域求复合函数fg(x)的定

7、义域,此时运用处理复合函数问题的通法换元法;第三种是应用性问题中求函数的定义域,此时除考虑函数解析式有意义外,还应考虑所给问题的实际意义对自变量的制约272求函数值域的方法配方法(二次函数);单调性法(能判断单调性);换元法(t换元与三角换元);不等式法(利用基本不等式);有界性法(主要是三角函数);数形结合法;导数法28已知f(x)log3x,1x9,求函数F(x)f(x2)f(x)2的值域 29错解F(x)log3x2(log3x)2(log3x)22log3x,令log3xt,则0t3,F(x)t22t(t1)21,当t0时,F(x)min0;当t3时,F(x)max15.F(x)值域为0,1530错解分析上述解法忽视了F(x)的定义域,由得1x3所以F(x)的定义域为1,331正解由 得1x3.F(x)(log3x)22log3x,1x3.令log3xt,则0t1,F(x)t22t(t1)21,当t0时,F(x)min0;当t1时,F(x)max3.F(x)的值域为0,3 32

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服