资源描述
山东省沂水县2018-2019学年八年级上学期期末数学模拟试卷
一.选择题(满分42分,每小题3分)
1.无论a取何值时,下列分式一定有意义的是( )
A. B. C. D.
2.下列长度的三条线段,能组成三角形的是( )
A.4cm,5cm,9cm B.8cm,8cm,15cm
C.5cm,5cm,10cm D.6cm,7cm,14cm
3.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1 B.x=1 C.x≠0 D.x≠1
4.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处 B.二处 C.三处 D.四处
5.化简的结果是( )
A.﹣1 B.1 C.﹣a D.a
6.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab
C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
7.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为( )
A.80° B.100° C.120° D.140°
8.已知x+y=﹣5,xy=3,则x2+y2=( )
A.25 B.﹣25 C.19 D.﹣19
9.计算(2a)2•a4的结果是( )
A.2a6 B.2a5 C.4a6 D.4a5
10.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是( )
A. B. C. D.
11.解分式方程,分以下四步,其中,错误的一步是( )
A.方程两边分式的最简公分母是(x﹣1)(x+1)
B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
12.已知x2﹣3x+1=0,则的值是( )
A. B.2 C. D.3
13.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
A.a+c B.b+c C.a﹣b+c D.a+b﹣c
14.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?( )
A.115 B.120 C. 125 D.130
二.填空题(共5小题,满分15分,每小题3分)
15.当x= 时,分式的值为零.
16.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为 .
17.若2x+y=4,x﹣=1,则4x2﹣y2= .
18.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为 .
19.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是 .
三.解答题(共7小题,满分63分)
20.(8分)计算下列各题:
(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)
(2)(2x+3y)2﹣(4x﹣9y)(4x+9y)+(3x﹣2y)2.
21.(8分)分解因式:
(1)5mx2﹣10mxy+5my2
(2)4(a﹣b)2﹣(a+b)2.
22.(8分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.
23.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
24.(10分)如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CE于N点.
(1)AD与BE有什么数量关系,并证明你的结论.
(2)求证:CO平分∠BOD.
25.(10分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
价格
甲
乙
进价(元/件)
m
m+20
售价(元/件)
150
160
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
26.(11分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:
(1)△ABD≌△CFD;
(2)BE⊥AC.
参考答案
一.选择题
1.解:当a=0时,a2=0,故A、B中分式无意义;
当a=﹣1时,a+1=0,故C中分式无意义;
无论a取何值时,a2+1≠0,
故选:D.
2.解:A、∵5+4=9,9=9,
∴该三边不能组成三角形,故此选项错误;
B、8+8=16,16>15,
∴该三边能组成三角形,故此选项正确;
C、5+5=10,10=10,
∴该三边不能组成三角形,故此选项错误;
D、6+7=13,13<14,
∴该三边不能组成三角形,故此选项错误;
故选:B.
3.解:由题意可知:x﹣1≠0,
x≠1
故选:D.
4.解:如图所示,加油站站的地址有四处.
故选:D.
5.解:=﹣=﹣a.
故选:C.
6.解:A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.
故选:D.
7.解:如图所示,延长BC交AD于点E,
∵∠A=50°,∠B=20°,
∴∠CED=∠A+∠B=50°+20°=70°,
∴∠BCD=∠CED+∠D=70°+30°=100°.
故选:B.
8.解:∵x+y=﹣5,xy=3,
∴x2+y2=(x+y)2﹣2xy=25﹣6=19.
故选:C.
9.解:(2a)2•a4=4a2•a4=4a6.
故选:C.
10.解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,
A、==;
B、==;
C、;
D、==.
故A正确.
故选:A.
11.解:分式方程的最简公分母为(x﹣1)(x+1),
方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,
解得:x=1,
经检验x=1是增根,分式方程无解.
故选:D.
12.解:∵x2﹣3x+1=0,
∴x2=3x﹣1,
∴原式==.
故选:A.
13.解:∵AB⊥CD,CE⊥AD,BF⊥AD,
∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,
∴∠A=∠C,∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,BF=DE=b,
∵EF=c,
∴AD=AF+DF=a+(b﹣c)=a+b﹣c,
故选:D.
14.解:∵正三角形ACD,
∴AC=AD,∠ACD=∠ADC=∠CAD=60°,
∵AB=DE,BC=AE,
∴△ABC≌△AED,
∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,
∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,
∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,
故选:C.
二.填空题(共5小题,满分15分,每小题3分)
15.解:分式的值为零,即x2﹣9=0,
∵x≠﹣3,
∴x=3.
故当x=3时,分式的值为零.
故答案为3.
16.解:∵点A(a,b)与点B(﹣3,4)关于y轴对称,
∴a=3,b=4,
∴a+b=3+4=7,
故答案为:7.
17.解:∵x﹣=1,
∴2x﹣y=2,
则4x2﹣y2=(2x+y)(2x﹣y)
=4×2
=8.
故答案为:8.
18.解:将a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,
将ab=12代入得:a2+b2+24=100,即a2+b2=76,
则两个正方形面积之和为76;
∴S阴影=S两正方形﹣S△ABD﹣S△BFG=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)=×(76﹣12)=32.
故答案为:32.
19.解:如图,延长EP交BC于点F,
∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°﹣150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=8,
∵△APE和△ABD都是等边三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四边形CDEP是平行四边形,
∴四边形CDEP的面积=EP×CF=a×b=ab,
又∵(a﹣b)2=a2﹣2ab+b2≥0,
∴2ab≤a2+b2=8,
∴ab≤2,
即四边形PCDE面积的最大值为2.
故答案为:2.
三.解答题(共7小题,满分63分)
20.解:(1)原式=a2﹣4ab+4b2﹣b2+4a2﹣4a2+4ab
=a2+3b2;
(2)原式=4x2+9y2+12xy﹣16x2+81y2+9x2+4y2﹣12xy
=﹣3x2+94y2.
21.解:(1)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.
(2)原式=[2(a﹣b)]2﹣(a+b)2=[2(a﹣b)+(a+b)][2(a﹣b)﹣(a+b)]=(3a﹣b)(a﹣3b).
22.解:原式=×﹣×
=3(x+1)﹣(x﹣1)
=2x+4,
,
解①得:x≤1,
解②得:x>﹣3,
故不等式组的解集为:﹣3<x≤1,
把x=﹣2代入得:原式=0.
23.(1)证明:∵∠ABC=∠DBE,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
,
∴△ABE≌△CBD,
∴AE=CD.
(2)∵△ABE≌△CBD,
∴∠BAE=∠BCD,
∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,
又∠CNM=∠ABC,
∵∠ABC=90°,
∴∠NMC=90°,
∴AE⊥CD.
(3)结论:②
理由:作BK⊥AE于K,BJ⊥CD于J.
∵△ABE≌△CBD,
∴AE=CD,S△ABE=S△CDB,
∴•AE•BK=•CD•BJ,
∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,
∴BM平分∠AMD.
不妨设①成立,则△ABM≌△DBM,则AB=BD,显然可不能,故①错误.
故答案为②.
24.解:(1)∵△ABC和△CDE都是等边三角形,
∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,
∴∠ACE=60°,
∴∠ACD=∠BCE=120°,
在△ACD和△BCE中,CA=CB,∠ACD=∠BCE,CD=CE
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)作CH⊥BE于H,CQ⊥AD于Q,
∵△ACD≌△BCE,
∴CQ=CH,
∵CH⊥BE于H,CQ⊥AD于Q,
∴CO平分∠BOD.
25.解:(1)根据题意可得:,
解得:m=100,
经检验m=100是原方程的解;
(2)设甲种童装为x件,可得:,
解得:98≤x<100,
因为x取整数,
所以有两种方案:
方案一:甲98,乙102;
方案二:甲99,乙101;
26.证明:(1)∵AD⊥BC,
∴∠ADC=∠FDB=90°.
∵∠ACB=45°,
∴∠ACB=∠DAC=45°,
∴AD=CD,
∵在△ABD和△CFD中,
,
∴△ABD≌△CFD(ASA),
(2)∵△ABD≌△CFD,
∴BD=FD,
∵∠FDB=90°,
∴∠FBD=∠BFD=45°,
∵∠ACB=45°,
∴∠BEC=90°,
∴BE⊥AC.
展开阅读全文