1、人教版小学数学五年级上册平行四边形的面积说课稿本课是九年义务教育六年制小学数学五年级上册第五章第一节的教学内容。一、在学生认识了平行四边形、三角形和梯形和掌握上长方形和正方形的面积计算基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。二、学生分析: 掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对
2、平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。三、说教法、学法 1、发展迁移原则 运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。 2、学生为主体,教师为主导的教学原则 针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。 3、反馈教学法 为了
3、体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。 4.学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。四说教学教学目标 1.培养学生的自主探究能力, 发展学生的空间思维能力。 2. 使学生理解并掌握平行四边形面积
4、计算公式,会运用平行四边形的面积公式求平行四边形的面积。使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。五教学重点: 使学生能够运用平行四边形面积公式正确计算出平行四边形面积。六教学难点: 平行四边形面积公式的推导过程。七教具学具: 1剪成一个长为40厘米,宽为30厘米的长方形和底为厘米,高为厘米的平行四边形硬纸片为教师演示教具; 3、让每个学生准备一个平行四边形纸片和一把剪刀。 为了能更好地凸显“自(一)、复习旧知,渗透转化 新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。(二)、创设情景,引
5、出课题 接着,我出示一个长方形和一个平行四边形,这对好朋友发生了争论了,它们都说是自己的面积要大,你们认为谁的面积要大呢?你是怎么知道谁的面积大呢? 通过这些问题,促使学生积极动脑猜想,长方形的面积大家会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算(板书)(三)动手实践,探究发现 1、数方格,引发猜想 在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?通过数格子的方法,并填写表格,从表格中学生很容易观察到平行四边形的面积与长方形的面积相等。2,剪拼法,验证猜想 学生动
6、手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形
7、的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积长宽,所以平行四边形的面积底高,公式用字母表示Sah。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。 3、解决实际问题教学例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。 新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:转化图形建立联系推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,
8、这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。(四)分层训练,理解内化 对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题: 第一层:基本练习:书本P82第1题 第二层:综合练习: 1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么? 让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。 2、你会求出这个平行四边形的面积吗? 通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它
9、相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。 第三层:扩展练习: 1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中) 学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。 2、把平行四边形模型拉近,它们的面积发生变化了吗? 通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。(五)课堂小结,巩固新知 小结:这节课我们学习了什么?你学会了什么? (有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。)