资源描述
2019-2020年中考数学模拟试题及答案
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为( ).
A.5 B.6 C.7 D.8
2.下列运算正确的是( )
A.3x3-5x3=-2x B.6x3÷2x-2=3x
C.()2=x6 D.-3(2x-4)=-6x-12
3.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5 B.5,4 C.4,4 D.5,5
4. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( )
A.16 B.17 C.18 D.19
S2
S1
5. 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( )
A.12 B.4米 C.5米 D.6米
6. 在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m2)与体积V(单位:m3)满足函数关系式(k为常数,k0),其图象如图所示,则k的值为( )
O
V
ρ
A(6,1.5)
第5题
A.9 B.-9 C.4 D.-4
X|k | B | 1 . c |O |m
7. 如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为( )
A、36° B、46° C、27° D 63°
8. 将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.
A、10 B、3 C、 D 6
9.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是( )
x
y
D.
O
x
y
A.
O
x
y
B.
O
x
y
C.
O
(第9题图)
10.如图,在等腰直角中,,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;
(2)的面积等于四边形CDOE面积的2倍;
(3);
(4).其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 共84分)
二、填空题:本大题共8小题,共24分,只要求填写最后结果,每小题填对得4分.
11. 已知实数,满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________
12. 如图6,Rt△ABC的斜边AB=16, Rt△ABC绕点O顺时针旋转后得到,则的斜边上的中线的长度为_____________ .
13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= .
14.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 .
15.已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= .
16.如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D,若AC=7,AB=4,则sinC的值为 .
A
B
O
C
D
第16题
w W w .X k b 1. c O m
17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm.
18. 如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为 .
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.
19. (本题满分7分,第⑴题4分,第⑵题4分)
(1)计算: 2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.
(2)先简化,再求值:,其中x=.
20. (本题满分8分)东营市某学校开展课外体育活动,决定开高A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.
⑴样本中最喜欢A项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
⑵请把条形统计图补充完整;
⑶若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
21. (本题满分9分) 如图,四边形是平行四边形,以对角线为直径作⊙,分别于、相交于点、.
(1)求证四边形为矩形.新课 标 第 一 网
(2)若试判断直线与⊙的位置关系,并说明理由.
22. (本题满分9分) 如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)证明:△PCE是等腰三角形;
(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;
(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.
23. (本题满分10分) 某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台)
10
20
30
y(单位:万元/台)
60
55
50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)
15
35
55
75
a
z
24. (本题满分10分)
如图一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C地有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上.A地位于B地北偏调西75°方向上.AB两地之间的距离为12海里.求A.C两地之间的距离. (参考数据:≈l. 41,≈1.73,≈2.45.结果精确到0.1.)
25. (本题满分12分) 如图1,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
图1
数学试题参考答案与评分标准
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.【答案】B.2.【答案】C.3.【答案】A.4. 【答案】B. 5. 【答案】B.
6. 【答案】:A.7. 【答案】:A.8. 【答案】A 9.【答案】A 10.【答案】C
第Ⅱ卷(非选择题 共84分)
二、填空题:本大题共8小题,共24分,只要求填写最后结果,每小题填对得4分.
11. 【答案】1000 12.【答案】 8. 13.【答案】4 14.【答案】x2-5x+6=0
15.【答案】6. 16. 【答案】:. 17.【答案】:18. 18. 【答案】.
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.
19. (本题满分7分,第⑴题4分,第⑵题4分)
(1)计算: 2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.
解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,
=2×﹣(﹣4)﹣2﹣1,
=+4﹣2﹣1,
=3﹣.
(2)先简化,再求值:,其中x=.
解:原式=•=,
当x=+1时,原式==.
20.【答案】:(1)40%,144 新|课 |标|第 | 一| 网(2)如图:
(3)人.
【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;
(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如图所示:
(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.
21.
答案:
22. 【答案】(1)证明:∵AB=BC,∴∠A=∠C,
∵PE∥AB,∴∠CPE=∠A,∴∠CPE=∠C,∴△PCE是等腰三角形;
(2)解:∵△PCE是等腰三角形,EM⊥CP,∴CM=CP=,tanC=tanA=k,
∴EM=CM•tanC=•k=,同理:FN=AN•tanA=•k=4k﹣,
由于BH=AH•tanA=×8•k=4k,而EM+FN=+4k﹣=4k,∴EM+FN=BH;
(3)解:当k=4时,EM=2x,FN=16﹣2x,BH=16,
所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,
S=S△ABC﹣S△PCE﹣S△APF,=64﹣x2﹣(8﹣x)2,=﹣2x2+16x,
配方得,S=﹣2(x﹣4)2+32,
所以,当x=4时,S有最大值32.
23. 【答案】:解:(1)设y与x的函数解析式为y=kx+b,
根据题意,得 解得
∴y与x之间的函数关系式为(10≤x≤70).
(2)设该机器的生产数量为x台,根据题意,得x()=2000,解得x1=50,x2=80.∵10≤x≤70,∴x=50.
答:该机器的生产数量为50台.
(3)设销售数量z与售价a之间的函数关系式为z=ka+b,根据题意,得 解得∴z=-a+90.
当z=25时,a=65.
设该厂第一个月销售这种机器的利润为w万元,
w=25×(65-)=625(万元).
24
【解】如图,过点B作BD⊥CA,交CA的延长线于点D,
由题意,得∠ACB=60°-30°=30°.
∠ABC=75°-60°=15°
∴∠DAB =∠DBA =45°
在Rt⊿ADB中.AB=12.∠ BAD =45°,
∴BD=AD=
在Rt⊿BCD中,
∴(海里)
答:AC两地之间的距离约为6.2海里
25.解答
(1)将M(2, 2)代入,得.解得m=4.
(2)当m=4时,.所以C(4, 0),E(0, 2).
所以S△BCE=.
(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.
设对称轴与x轴的交点为P,那么.新|课 |标|第 | 一| 网
因此.解得.所以点H的坐标为.
(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.
由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC.
设点F的坐标为,由,得.
解得x=m+2.所以F′(m+2, 0).
由,得.所以.
由,得.
整理,得0=16.此方程无解.
图2 图3 图4
②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,
由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC.
在Rt△BFF′中,由FF′=BF′,得.
解得x=2m.所以F′.所以BF′=2m+2,.
由,得.解得.
综合①、②,符合题意的m为.
2019-2020年中考数学模拟试题含答案(精选5套)
注意事项:
1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效;
2. 答题前,请认真阅读答题卷上的注意事项;
3. 考试结束后,将本试卷和答题卷一并交回.
一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B铅笔涂黑)
1. 2 sin 60°的值等于
A. 1 B. C. D.
2. 下列的几何图形中,一定是轴对称图形的有
圆弧 角 扇形 菱形 等腰梯形
A. 5个 B. 4个 C. 3个 D. 2个
3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为
A. 1.8×10 B. 1.8×108 C. 1.8×109 D. 1.8×1010
4. 估计-1的值在
A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间
5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是
A. 平行四边形 B. 矩形 C. 正方形 D. 菱形
6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是
A. B. C. D.
(第7题图)
7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五
类电视节目的喜爱情况,随机抽取部分学生进行调查,并结
合调查数据作出如图所示的扇形统计图. 根据统计图提供的
信息,可估算出该校喜爱体育节目的学生共有
A. 1200名 B. 450名 C. 400名 D. 300名
(第9题图)
8. 用配方法解一元二次方程x2 + 4x – 5 = 0,此方程可变形为
A. (x + 2)2 = 9 B. (x - 2)2 = 9
C. (x + 2)2 = 1 D. (x - 2)2 =1
9. 如图,在△ABC中,AD,BE是两条中线,则S△EDC∶S△ABC =
A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶3
10. 下列各因式分解正确的是
A. x2 + 2x -1=(x - 1)2 B. - x2 +(-2)2 =(x - 2)(x + 2)
C. x3- 4x = x(x + 2)(x - 2) D. (x + 1)2 = x2 + 2x + 1
(第11题图)
11. 如图,AB是⊙O的直径,点E为BC的中点,AB = 4,
∠BED = 120°,则图中阴影部分的面积之和为
A. B. 2 C. D. 1
12. 如图,△ABC中,∠C = 90°,M是AB的中点,动点P从点A
出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿
(第12题图)
CB方向匀速运动到终点B. 已知P,Q两点同时出发,并同时
到达终点,连接MP,MQ,PQ . 在整个运动过程中,△MPQ
的面积大小变化情况是
A. 一直增大 B. 一直减小
C. 先减小后增大 D. 先增大后减小
二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)
13. 计算:│-│= .
14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k的取值范围是 .
15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .
16. 在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m,则根据题意可得方程 .
(第17题图)
17. 在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,
再向右平移2个单位称为1次变换. 如图,已知等边三角形
ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把
△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对
应点A′ 的坐标是 .
(第18题图)
18. 如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜
边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的
斜边AD为直角边,画第三个等腰Rt△ADE ……依此类推直
到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成
的图形的面积为 .
三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)
19. (本小题满分8分,每题4分)
°
(1)计算:4 cos45°-+(π-) +(-1)3;
(2)化简:(1 - )÷.
20. (本小题满分6分)
≤1, ……①
解不等式组:
3(x - 1)<2 x + 1. ……②
(第21题图)
21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图
痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:
(1)求这50个样本数据的平均数、众数和中位数;
(2)根据样本数据,估算该校1200名学生共参加了多少次活动.
23. (本小题满分8分)如图,山坡上有一棵树AB,树底
部B点到山脚C点的距离BC为6米,山坡的坡角
为30°. 小宁在山脚的平地F处测量这棵树的高,点
C到测角仪EF的水平距离CF = 1米,从E处测得树
顶部A的仰角为45°,树底部B的仰角为20°,求树
(第23题图)
AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
(第24题图)
24. (本小题满分8分)如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且
OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM = AN;
(2)若⊙O的半径R = 3,PA = 9,求OM的长.
25. (本小题满分10分)某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
(第26题图)
26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(-1,0). 如图所示,B点在抛物线y =x2 -x – 2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC ≌ △COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是
以AC为直角边的直角三角形?若存在,求出
所有点P的坐标;若不存在,请说明理由.
2016年初三适应性检测参考答案与评分意见
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
C
B
C
B
D
A
B
C
A
C
说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P,Q分别位于A、C两点时,S△MPQ =S△ABC;当点P、Q分别运动到AC,BC的中点时,此时,S△MPQ =×AC. BC =S△ABC;当点P、Q继续运动到点C,B时,S△MPQ =S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.
二、填空题
13. ; 14. k<0; 15. (若为扣1分); 16. - = 8;
17. (16,1+); 18. 15.5(或).
三、解答题
19. (1)解:原式 = 4×-2+1-1……2分(每错1个扣1分,错2个以上不给分)
= 0 …………………………………4分
(2)解:原式 =(-)· …………2分
= · …………3分
= m – n …………4分
20. 解:由①得3(1 + x)- 2(x-1)≤6, …………1分
化简得x≤1. …………3分
由②得3x – 3 < 2x + 1, …………4分
化简得x<4. …………5分
∴原不等式组的解是x≤1. …………6分
21. 解(1)如图所示(作图正确得3分)
(2)∵BD平分∠ABC,∠ABC = 72°,
∴∠ABD =∠ABC = 36°, …………4分
∵AB = AC,∴∠C =∠ABC = 72°, …………5分
∴∠A= 36°,
∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分
22. 解:(1)观察条形统计图,可知这组样本数据的平均数是
==3.3, …………1分
∴这组样本数据的平均数是3.3. …………2分
∵在这组样本数据中,4出现了18次,出现的次数最多,
∴这组数据的众数是4. …………4分
∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有 = 3.
∴这组数据的中位数是3. ………………6分
(2)∵这组数据的平均数是3.3,
∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.
∴该校学生共参加活动约3960次. ………………8分
23. 解:在Rt△BDC中,∠BDC = 90°,BC = 6米,
∠BCD = 30°,
∴DC = BC·cos30° ……………………1分
= 6×= 9, ……………………2分
∴DF = DC + CF = 9 + 1 = 10,…………………3分
∴GE = DF = 10. …………………4分
在Rt△BGE中,∠BEG = 20°,
∴BG = CG·tan20° …………………5分
=10×0.36=3.6, …………………6分
在Rt△AGE中,∠AEG = 45°,
∴AG = GE = 10, ……………………7分
∴AB = AG – BG = 10 - 3.6 = 6.4.
答:树AB的高度约为6.4米. ……………8分
24. 解(1)如图,连接OA,则OA⊥AP. ………………1分
∵MN⊥AP,∴MN∥OA. ………………2分
∵OM∥AP,∴四边形ANMO是矩形.
∴OM = AN. ………………3分
(2)连接OB,则OB⊥AP,
∵OA = MN,OA = OB,OM∥BP,
∴OB = MN,∠OMB =∠NPM.
∴Rt△OBM≌Rt△MNP. ………………5分
∴OM = MP.
设OM = x,则NP = 9- x. ………………6分
在Rt△MNP中,有x2 = 32+(9- x)2.
∴x = 5. 即OM = 5 …………… 8分
25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分
∴4x + 5(x + 40)=1820. ……………………………………… 2分
∴x = 180,x + 40 = 220.
即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分
(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.
a≤(200 - a),
∴ …………… 4分
180 a + 220(200- a)≤40880.
解得78≤a≤80. …………… 5分
∵a为整数,∴a = 78,79,80
∴共有3种方案. ………………6分
设购买课桌凳总费用为y元,则
y = 180a + 220(200 - a)=-40a + 44000. …………… 7分
∵-40<0,y随a的增大而减小,
∴当a = 80时,总费用最低,此时200- a =120. …………9分
即总费用最低的方案是:
购买A型80套,购买B型120套. ………………10分
2016年中考数学模拟试题(二)
一、 选择题
1、 数中最大的数是()
2
2
主视图
左视图
俯视图
A、 B、 C、 D、
2、9的立方根是()
A、 B、3 C、 D、
3、已知一元二次方程的两根、,则()
A、4 B、3 C、-4 D、-3
4、如图是某几何题的三视图,下列判断正确的是()
A、几何体是圆柱体,高为2 B、几何体是圆锥体,高为2
C、几何体是圆柱体,半径为2 D、几何体是圆柱体,半径为2
5、若,则下列式子一定成立的是()
A、 B、 C、 D、
6、如图AB∥DE,∠ABC=20°,∠BCD=80°,则∠CDE=()
A、20° B、80° C、60° D、100°
7、已知AB、CD是⊙O的直径,则四边形ACBD是()
A、正方形 B、矩形 C、菱形 D、等腰梯形
8、不等式组的整数解有()
A、0个 B、5个 C、6个 D、无数个
‘
9、已知点是反比例函数图像上的点,若,
则一定成立的是()
A、 B、
C、 D、
10、如图,⊙O和⊙O′相交于A、B两点,且OO’=5,OA=3, O’B=4,则AB=( )
A、5 B、2.4 C、2.5 D、4.8
二、填空题
11、正五边形的外角和为
12、计算:
13、分解因式:
14、如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角,则飞机A到控制点B的距离约为 。(结果保留整数)
15、如图,随机闭合开关A、B、C中的一个,灯泡发光的概率为
16、已知,则
三、解答题
17、已知点P(-2,3)在双曲线上,O为坐标原点,连接OP,求k的值和线段OP的长
18、如图,⊙O的半径为2,,∠C=60°,求的长
19、观察下列式子
(1)根据上述规律,请猜想,若n为正整数,则n=
(2)证明你猜想的结论。
20、某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚。
(1)全班有多少人捐款?
(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?
捐款
人数
0~20元
21~40元
41~60元
61~80元
6
81元以上
4
81元
以上
8%
0~20元
72°
61~80元
41~60元
32%
21~40元
21、校运会期间,某班预计用90元为班级同学统一购买矿泉水,生活委员发现学校小卖部有优惠活动:购买瓶装矿泉水打9折,经计算按优惠价购买能多买5瓶,求每瓶矿泉水的原价和该班实际购买矿泉水的数量。
22、如图,矩形OABC顶点A(6,0)、C(0,4),直线分别交BA、OA于点D、E,且D为BA中点。
(1)求k的值及此时△EAD的面积;
(2)现向矩形内随机投飞镖,求飞镖落在△EAD内的概率。
(若投在边框上则重投)
23、如图,正方形ABCD中,G是BC中点,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延长线上一点。
(1)求证:△ABF≌△DAE
(2)尺规作图:作∠DCM的平分线,交GN于点H(保留作图痕迹,不写作法和证明),试证明GH=AG
24、已知抛物线
(1)若求该抛物线与x轴的交点坐标;
(2)若,是否存在实数,使得相应的y=1,若有,请指明有几个并证明你的结论,若没有,阐述理由。
(3)若且抛物线在区间上的最小值是-3,求b的值。
25、已知等腰和等腰中,∠ACB=∠AED=90°,且AD=AC
(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是 ,MN与EC的数量关系是
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由。
2016年天河区初中毕业班综合练习二(数学)参考答案
说明:
1、本解答给出了一种解法供参考,如果考生的解法与本解答不同,各题组可根据试题的主要考查内容比照评分标准制订相应的评分细则.
2、对于计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
一、选择题(本题共10小题,每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
D
A
A
B
C
B
B
B
D
二、填空题(本题共6小题,每小题3分,共18分)
题号
11
12
13
14
15
16
答案
360°
-m²
3509
2
三、解答题(本题有9个小题, 共102分。解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分9分)
解:(1)把代入 ,得 --------4分
(2)过点P作PE⊥轴于点E,则OE=2,PE=3 --------6分
∴在△OPE中, PO= --------9分
18.(本小题满分9分)
解:方法一
连接OA,OC --------1分
∵,∠C=60°
∴∠B=60° --------4分
∴ ∠AOC=120° --------6分
∴ π×2=π --------9分
方法二:
∵
∴ --------2分
∵∠C=60°
∴ --------5分
展开阅读全文