1、2022高考数学一轮复习 高考大题专项练概率与统计北师大版2022高考数学一轮复习 高考大题专项练概率与统计北师大版年级:姓名:高考大题专项(六)概率与统计1.某厂分别用甲、乙两种工艺生产同一种零件,尺寸在223,228内(单位:mm)的零件为一等品,其余为二等品.在两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示.(1)分别计算抽取的两种工艺生产的零件尺寸的平均数;(2)已知甲工艺每天可生产300个零件,乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个.视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高?2.从某企业生产的某种产
2、品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.(1)求图中a,b,c的值;(2)估计这种产品质量指标值的平均数及方差(说明:同一组中的数据用该组区间的中点值作代表;方差的计算只需列式正确);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的90%”的规定?3.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全
3、县24 000名中学生(其中男生14 000人,女生10 000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是0,3)男生平均每天足球运动的时间分布情况:平均每天足球运动的时间0,0.5)0.5,1)1,1.5)1.5,2)2,2.5)2.5,3人数23282210x女生平均每天足球运动的时间分布情况:平均每天足球运动的时间0,0.5)0.5,1)1,1.5)1.5,2)2,2.5)2.5,3人数51218103y(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球
4、运动的时间不少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.请根据上述表格中的统计数据填写下面22列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?性别足球健将非足球健将总计男生女生总计若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(2k0)0.100.050.01k02.7063.8416.6354.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况
5、,随机从某小区居民中抽取了40人,将他们的年龄分成7段:10,20),20,30),30,40),40,50),50,60),60,70),70,80后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)若从样本中年龄在50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;已知该小区年龄在10,80内的总人数为2 000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.5.在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位
6、的选手积分如下表:运动员比赛场次总分1234567891011A322242621B1351104428C986111228D784431835E3125827542F4116936847G10121281210771H12126127121273(1)根据表中的比赛数据,比较A与B的成绩及稳定情况;(2)从前7场平均分低于6.5的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.6.某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,
7、已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).7.随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展.为此,我市于2018年举行第一届高中文科素养竞赛,竞赛结束后,为了评估我市高中学
8、生的文科素养,从所有参赛学生中随机抽取1 000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,从左到右依次记为50,60),60,70),70,80),80,90),90,100,并绘制成如图所示的频率分布直方图.(1)请补全频率分布直方图并估计这1 000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);(2)采用分层抽样的方法从这1 000名学生的成绩中抽取容量为40的样本,再从该样本成绩不低于80分的学生中随机抽取2名进行问卷调查,求至少有一名学生成绩不低于90分的概率;(3)我市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“文科素养优秀标兵”称号
9、.一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“文科素养优秀标兵”称号.8.某市100 000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩X(满分是184分)的频率分布直方图.市教育局规定每个学生需要缴考试费100元.某企业根据这100 000 名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人400+100(X-172)元的交通和餐补费.(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩X的中位数,并对甲、乙的成绩作出客观的评价;(2)令Y表示每个学生的缴费或获得交通和餐补费的代数和,把Y用X的函数来表示,并根据频率分布直方图估计Y800的概率.