收藏 分销(赏)

文献综述-石墨烯.doc

上传人:w****g 文档编号:2189315 上传时间:2024-05-22 格式:DOC 页数:7 大小:30.04KB
下载 相关 举报
文献综述-石墨烯.doc_第1页
第1页 / 共7页
文献综述-石墨烯.doc_第2页
第2页 / 共7页
文献综述-石墨烯.doc_第3页
第3页 / 共7页
文献综述-石墨烯.doc_第4页
第4页 / 共7页
文献综述-石墨烯.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、(完整版)文献综述 石墨烯石墨烯摘要:石墨烯英文名Graphene,是从石墨材料中剥离出来的由碳原子组成的二维晶体,是已知材料中最薄的一种,非常牢固坚硬,是目前已知世界上强度最高的材料,其最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。因此具有良好的导电性能,有很好的应用前景.本文将从石墨烯的结构简介、发展历程、特性以及制备方法、现有成果及应用前景几方面进行描述.关键词:石墨烯载荷子 晶体管 太空电梯 光子传感结构简介石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子

2、,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似.人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,而石墨烯是碳的二维结构。这种石墨晶体薄膜的厚度只有0。335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚.石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片.当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯.发展历程石墨烯出现在实验室中是在2004年,当时,英国的两位科学家安德烈杰姆和克斯特亚诺沃塞洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将

3、薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯.这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方

4、式浪费了7080的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。特性1.电子运输在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级别上的微观扭曲。2。导电性石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构

5、稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。石墨烯有相当的不透明度:可以吸收大约2。3%的可见光.而这也是石墨烯中载荷子相对论性的体现。3.机械特性石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比

6、世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。在试验过程中,他们选取了一些在1020微米之间的石墨烯微粒作为研究对象。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在11.5微米之间.之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂.如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米

7、)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断.换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。4. 电子的相互作用利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。制备方法石墨烯的合成方法主要有两种:

8、机械方法和化学方法。机械方法包括微机械分离法、取向附生法和加热SiC的方法 ; 化学方法是化学还原法与化学解理法.微机械分离法最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来.2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本.取向附生法晶膜生长取向附生法是利用生长基质原子结构“种”出石

9、墨烯,首先让碳原子在 1150下渗入钌,然后冷却,冷却到850后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“ 孤岛 布满了整个基质表面,最终它们可长成完整的一层石 墨烯。第一层覆盖 8 0 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意.但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影 响碳层的特性。另外Peter W.Sutter 等使用的基质是稀有金属钌。加热 SiC法该法是通过加热单晶6HSiC脱除Si,在单晶(0001) 面上分解出石墨烯片层.具体过程

10、是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至12501450后恒温1min20min,从而形成极薄的石墨层,经过几年的探索,Berger等人已经能可控地制备出单层或是多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。 包信和等开发了一条以商品化碳化硅颗粒为原料,通过高温裂解规模制备高品质无支持(Free standing)石墨烯材料的新途径。通过对原料碳化硅粒子、裂解温度、速率以及气氛的控制,可以实现对石墨烯结构和尺寸的调控。这是一种非常新颖、对实现石墨烯的实际应用非常重

11、要的制备方法。化学还原法化学还原法是将氧化石墨与水以1 mg/mL的 比例混合, 用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在1 0 0回流2 4 h ,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。Sasha Stankovich 等利用化学分散法制得厚度为1 nm左右的石墨烯。化学解理法化学解理法是将氧化石墨通过热还原的方法制备石墨烯的方法,氧化石墨层间的含氧官能团在一定温度下发生反应,迅速放出气体,使得氧化石墨层被还原的同时解理开,得到石墨烯。这是一种重要的制备石墨烯的方法,天津大学杨全红等用低温化学解理氧化石墨的方法制备了高质量的石墨烯。现有成果2011年4月7日IBM向媒体展示了其最

12、快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。该晶体管的截止频率为155GHz,使得其速度更快的同时,也比IBM去年2月展出的100GHz石墨烯晶体管具备了更多的能力。IBM研究人员林育名表示,石墨烯晶体管成本较低,可以在标准半导体生产过程中表现出优良的性能,为石墨烯芯片的商业化生产提供了方向,从而用于无线通信、网络、雷达和影像等多个领域。该晶体管的研制是IBM承接美国国防部高级研究计划局的任务,研发高性能无线电频率晶体管,军方对此很感兴趣。目前它尚未可完全用于PC机,因为自然石墨烯中缺少能隙,石墨烯晶体管不具备数码切换操作需要的开闭比,从而在处理离散数

13、码信号方面不如传统处理器.相比之下,石墨烯的连续能隙流使得其处理模拟信号的能力更强。通过使用IBM改良的“类金刚石碳,石墨烯晶体管的温度稳定性更强。同时,它也是目前为止IBM最小的晶体管,选通脉冲宽度从550纳米降到了40纳米,而去年的产品宽度为240纳米.2009年12月1日在美国召开的材料科学国际会议上,日本富士通研究所宣布,他们用石墨烯制作出了几千个晶体管.富士通研究所的研究人员将原料气体吹向事先涂有用做催化剂的铁的衬底,在这种衬底上制成大面积石墨烯薄膜。 大面积的石墨烯制备一直是个难题。富士通用上述方法制成了高质量的7.5厘米直径的石墨烯膜。在此基础上,再配置电极和绝缘层,制成了石墨烯

14、晶体管。由于石墨烯面积较大,富士通在上面制成了几千个晶体管。石墨烯晶体管比硅晶体管功耗低和运行速度快,可制作出性能优良的半导体器件.如果改进技术后有望进一步扩大石墨烯面积,这样能够制作出更多的晶体管和石墨烯集成电路,为生产高档电子产品创造了条件. 2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。研究人员在硅衬底上制作了石墨烯薄膜,将红外线照射到石墨烯薄膜上,只需很短时间就能放射出太赫兹光.如果今后能够继续改进技术,使光源强度进一步增大,将开发出高性能的激光器。 研究团队在硅衬底上使用有机气体制作一层碳硅化合物。然后,进行热处理,使其生长出石墨烯的薄膜。该石

15、墨烯薄膜只需极短暂的时间照射红外线,就能从石墨烯上发送出太赫兹光.目前,该团队正致力于开发能将光粒封闭在内部,使光源强度增加的器件,期望能够开发出在接近室温条件下可工作的太赫兹激光器。 2010年,美国莱斯大学利用该石墨烯量子点,制作单分子传感器。莱斯大学将石墨烯薄片与单层氦键合,形成石墨烷.石墨烷是绝缘体。氦使石墨烯由导体变换成为绝缘体.研究人员移除石墨烯薄片两面的氦原子岛,就形成了被石墨烷绝缘体包围的、微小的导电的石墨烯阱。该导电的石墨烯阱就可作为量子阱。量子点的半导体特性要优于体硅材料器件.这一技术可用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等。应用前景可做“太空电梯缆线

16、 据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。美国研究人员称,“太空电梯的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质“石墨烯”完全适合用来制造太空电梯缆线!人类通过“太空电梯”进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。代

17、替硅生产超级计算机科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制.由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。光子传感器石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担

18、当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。其它应用石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损.利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出

19、纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2。3万英里长太空电梯成为现实。 展望在短短几年间,石墨烯从一个新生儿快速成长为科学界的新星,自身优异的性能渐渐被发掘和开发,但在石墨烯的研究与应用中仍然存在很多挑战:第一,如何大规模制备高质量石墨烯;第二,石墨烯的很多性质尚不清楚,如电子性能,磁性等;第三,探索石墨烯新的应用领域,目前最有前景的应用有晶体管、太阳能电池和传感器等,不同的应用领域对石墨烯的要求也不同;第四,开拓石墨烯和其他学科的交叉领域,探索石墨烯功能化的新性能.目前有机化学家和材料化学家二者结合,致力于找到更好的合成路线,制备高质量的石墨烯。工程师们也在

20、为开发石墨烯的各种优异的性能而制备更好的器件努力。石墨烯作为很多领域非常有潜力的替代材料,还存在很多问题,有待进一步的研究。参考文献:1张伟娜,何伟,石墨烯的制备方法及其应用特性,中国学术期刊网,2010。022Zhang YB,Tan Y W,Stormer H L,etal.Experimental observation of the quantum hall effect and berrys phase in graphemeJ。Nature,2005,438(7065):2012204。3Lee C, Wei XD , KysarJ W, et al. Measurement of

21、 the elasticproperties and intrinsic strength of monolayer graphene J 。Science .2008 , 321(5887) : 385 388。4Meyer J C, Geim A K, Katsnelson M l, et al。 The structure of suspended graphenesheetsJ。 Nature , 2007 , 446(7131) :60263.5Li D, Muller M B i Gilje S l et al. Processable aqueousdispersionsofgraphenenanosheetsJ.Nature Nanotechnology ,2008 , 3(2)1012105。

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服