收藏 分销(赏)

极点与极线背景下的高考试题.doc

上传人:精*** 文档编号:2186664 上传时间:2024-05-22 格式:DOC 页数:5 大小:895.56KB
下载 相关 举报
极点与极线背景下的高考试题.doc_第1页
第1页 / 共5页
极点与极线背景下的高考试题.doc_第2页
第2页 / 共5页
极点与极线背景下的高考试题.doc_第3页
第3页 / 共5页
极点与极线背景下的高考试题.doc_第4页
第4页 / 共5页
极点与极线背景下的高考试题.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、极点与极线背景下的高考试题王文彬(江西省抚州市第一中学344000)极点与极线是高等几何中的重要概念,当然不是高中数学课程标准规定的学习内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所反映,自然也会成为高考试题的命题背景.作为一名中学数学教师,应当了解极点与极线的概念,掌握有关极点与极线的基本性质,只有这样,才能“识破”试题中蕴含的有关极点与极线的知识背景,进而把握命题规律.PEFGHMANB图11.从几何角度看极点与极线定义1如图1,设是不在圆锥曲线上的一点,过点引两条割线依次交圆锥曲线于四点,连接交于,连接交于,则直线为点对应的极线.若为圆

2、锥曲线上的点,则过点的切线即为极线.由图1同理可知,为点对应的极线,为点所对应的极线.因而将称为自极三点形.设直线交圆锥曲线于点两点,则恰为圆锥曲线的两条切线.定理1(1)当在圆锥曲线上时,则点的极线是曲线在点处的切线;(2)当在外时,过点作的两条切线,设其切点分别为,则点的极线是直线(即切点弦所在的直线);(3)当在内时,过点任作一割线交于,设在处的切线交于点,则点的极线是动点的轨迹.PQA图2Bl定理2如图2,设点关于圆锥曲线的极线为,过点任作一割线交于,交于,则;反之,若有成立,则称点调和分割线段,或称点与关于调和共轭,或称点(或点)关于圆锥曲线的调和共轭点为点(或点).点关于圆锥曲线的

3、调和共轭点是一条直线,这条直线就是点的极线.推论1如图2,设点关于圆锥曲线的调和共轭点为点,则有;反之,若有成立,则点与关于调和共轭.可以证明与是等价的.事实上,由有.特别地,我们还有推论2如图3,设点关于有心圆锥曲线(设其中心为)的调和共轭点为点,连线经过圆锥曲线的中心,则有,反之若有此式成立,则点与关于调和共轭.证明:设直线与的另一交点为,则PQR图3RO,化简即可得.反之由此式可推出,即点与关于调和共轭.推论3如图4,圆锥曲线的一条对称轴上的两点(不在上),若关于调和共轭,过任作的一条割线,交于PlA图4RBQR两点,则.证明:因关于直线对称,故在上存在的对称点.若与重合,则与也重合,此

4、时关于对称,有;若与不重合,则与也不重合,由于关于调和共轭,故为上完全四点形的对边交点,即在上,故关于直线对称,也有.定理3(配极原则)点关于圆锥曲线的极线经过点点关于的极线经过点;直线关于的极点在直线上直线关于的极点在直线上.由此可知,共线点的极线必共点;共点线的极点必共线.以上未加证明的定理,可参阅有关高等几何教材,如【1】,其中定理1的初等证法可参阅文【2】.2.从代数角度看极点与极线定义2已知圆锥曲线,则称点和直线是圆锥曲线的一对极点和极线.事实上,在圆锥曲线方程中,以替换,以替换,以替换,以替换即可得到点的极线方程.特别地:(1)对于椭圆,与点对应的极线方程为;(2)对于双曲线,与点

5、对应的极线方程为;(3)对于抛物线,与点对应的极线方程为.(4)如果圆锥曲线是椭圆,当为其焦点时,极线恰为椭圆的准线;如果圆锥曲线是双曲线,当为其焦点时,极线恰为双曲线的准线;如果圆锥曲线是抛物线,当为其焦点时,极线恰为抛物线的准线.3.从极点与极线角度看圆锥曲线试题【例1】(2010江苏卷文理18)在平面直角坐标系中,如图,已知椭圆的左右顶点为,右焦点为设过点的直线与此椭圆分别交于点,其中,(1)设动点P满足,求点的轨迹;(2)设,求点的坐标;(3)设,求证:直线必过轴上的一定点(其坐标与无关)xOBA图5KMN分析与解:前面两问比较简单,这里从略.对于(3),当时,点坐标为,连,设直线与的

6、交点为,根据极点与极线的定义可知,点对应的极线经过,又点对应的极线方程为,即,此直线恒过轴上的定点,从而直线也恒过定点.【例2】(2008安徽卷理22)设椭圆过点,且左焦点为.(1)求椭圆的方程;BQxyOPA.图6(2)当过点的动直线与椭圆交于两个不同的点时,在线段上取点,满足,证明点总在某定直线上.分析与解:(1)易求得答案.(2)由条件可有,说明点关于圆锥曲线调和共轭.根据定理2,点的轨迹就是点对应的极线,即,化简得.故点总在定直线上.【例3】(1995全国卷理26)已知椭圆,直线,是上一点,射线交椭圆于点,又点在上且满足,当点在上移动时,求点的轨迹方程.,并说明轨迹是什么曲线.分析与解

7、:由条件知可知点关于圆锥曲线调和共轭,而点可看作是点的极线与直线的交点.设,则与对应的极线方程为RQxyOP.图7,化简得又直线的方程为,化简得解由联立方程组得ABPOxy图8F,消去得,可化为(不同时为),故点的轨迹是以为中心,长短轴分别为和,且长轴平行于轴的椭圆,但需去掉坐标原点.【例4】(2006年全国卷II理21)已知抛物线的焦点为,是抛物线上的两动点,且,过两点分别作抛物线的切线,并设其交点为.(1)证明为定值;(2)设的面积为,写出的表达式,并求的最小值.分析与解:(1)显然,点的极线为,故可设点,再设,三点对应的极线方程分别为,由于三点共线,故相应的三极线共点于,将代入后面两个极

8、线方程得,两式相减得.又,故.ABPOxy图9Fl(2)设的方程为,与抛物线的极线方程对比可知直线对应的极点为,把代入并由弦长公式得,所以.显然,当时,取最小值.【例5】(2005江西卷理22)设抛物线的焦点为,动点在直线上运动,过作抛物线的两条切线,且与抛物线分别相切于两点.(1)求的重心的轨迹方程;(2)证明.分析与解:(1)设点,与对比可知直线对应的极点为,为直线上的动点,则点对应的极线必恒过点.设,可化为,故直线对应的极点为,将直线的方程代入抛物线方程得,由此得,的重心的轨迹方程为,消去即得.(2)设,由(1)知,又,由(1)知,即,所以,.同理.所以有.参考文献【1】 周兴和.高等几何.科学出版社,2003.9【2】 李凤华.圆锥曲线的极点与极线及其应用.数学通讯J,2012(4)下半月

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服