收藏 分销(赏)

圆的解题技巧总结.doc

上传人:w****g 文档编号:2183964 上传时间:2024-05-22 格式:DOC 页数:11 大小:1.10MB
下载 相关 举报
圆的解题技巧总结.doc_第1页
第1页 / 共11页
圆的解题技巧总结.doc_第2页
第2页 / 共11页
圆的解题技巧总结.doc_第3页
第3页 / 共11页
圆的解题技巧总结.doc_第4页
第4页 / 共11页
圆的解题技巧总结.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、guoshishuxue 圆的解题技巧总结一、垂径定理的应用给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A、B两点重合,即有结论AP=BP,弧AC=弧BC其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据例1 (2006山东青岛)某居民小区一处圆柱形的输水管道破裂,

2、维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径分析:本题是一道和垂径定理应用有关的实际问题,要确定圆形截面的圆心,只要在五b上取一点E,连结AE,BE,分别作线段AE,BE的垂直平分线,它们的交点即为圆心要求圆的半径,只要过圆心作AB的垂线,构造直角三角形即可解决答案:10 cm例2 (2007芜湖)如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与

3、CD切于点Q,则AB=?答案:6例3 (2007天门)如图,已知O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及O上,并且POM=45,则AB的长为多少?答案:例4 图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?二、与圆有关的多解题几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解1忽视点的可能位置例5 ABC是半径为2的圆的内接三角形,若cm,则A的度数为_解:60或1202忽视点与圆的位置关系例6 点P到0的最短距离为2 cm,最长距离为6 cm,则0的半径是_解:4 cm或 2

4、cm.3忽视平行弦与圆心的不同位置关系例7 已知四边形ABCD是0的内接梯形,ABCD,AB=8 cm,CD=6 cm,0的半径是5 cm,则梯形的面积是_ 解:49 cm2或 7 cm2.4忽略两圆相切的不同位置关系例8 点P在0外,OP=13 cm,PA切0于点A,PA=12 cm,以P为圆心作P与0相切,则P的半径是_解:8 cm或18 cm例9 若O1与02相交,公共弦长为24 cm,O1与02的半径分别为13 cm和15 cm,则圆心距0102的长为_解:14 cm或4 cm三、巧证切线切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点判断直线是否是圆的切线,主要有两条途径

5、:1圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线的距离等于半径例10 如图,P是AOB的角平分线OC上一点,PDOA于点D,以点P为圆心,PD为半径画P,试说明OB是P的切线2证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可例11 (2007泸州)如图,已知AB为O的直径,直线BC与0相切于点B,过A作ADOC交0于点D,连结CD.(1)求证:CD是0的切线;(2)若AD=2,直径AB=6,求线段BC的长 四、结论巧用,妙解题例12 已知:如图,O为RtABC的

6、内切圆,D、E、F分别为AB、AC、BC边上的切点,求证:该结论可叙述为:“直角三角形的面积等于其内切圆与斜边相切的切点分斜边所成两条线段的乘积”运用它,可较简便地解决一些与直角三角形内切圆有关的问题,举例如下:例13 如图,0为RtABC的内切圆,切点D分斜边AB为两段,其中AD10,BD3,求AC和BC的长AC=12,BC= 5.例14 如图,ABC中A与B互余,且它们的角平分线相交于点0,又OEAC,OFBC,垂足分别为E、F,AC=10,BC13求AEBF的值AEBF65五、点击圆锥的侧面展开图圆锥的侧面展开图是中考中的热点内容:解决此类问题的关键是明确圆锥的侧面展开图中各元素与圆锥各

7、元素之间的关系:圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长例15 若一个圆锥的母线长是它的底面半径长的3倍,则它的侧面展开图的圆心角是( ) 答案:CA180 B90 C120 D135例16 圆锥的侧面展开图是一个半圆面,则这个圆锥的母线长与底面半径长的比是( ) 答案:AA.2:1 B.2:1 C:1 D:1例17 (2007山西)如图,小红要制作一个高4 cm,底面直径是6 cm的圆锥形小漏斗,若不计接缝,不计损耗,则她所需纸板的面积是( ) 答案:AA15cm2 B6cm2 C12cm2 D30 cm2例18 下图是小芳学习时使用的圆锥形台灯罩的示意图,则围

8、成这个灯罩的铁皮的面积为_cm2(不考虑接缝等因素,计算结果用表示)答案:300评注:圆锥的侧面积,需要熟练掌握其计算公式,理解圆锥的侧面积等于其剪开后扇形的面积例19 如图,有一块四边形形状的铁皮ABCD,BC= CD,AB= 2AD,ABCADB= 90(1)求C的度数;(2)以C为圆心,CB为半径作圆弧BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知BCa,求该圆锥的底面半径;(3)在剩下的材料中,能否剪下一块整圆做该圆锥的底面?并说明理由六、例谈三角形内切圆问题三角形的内切圆是与三角形都相切的圆,它的圆心是三角形三条角平分线的交点,它到三角形三边的距离相等,它与顶点的连线平

9、分内角应用内心的性质,结合切线的性质、切线长的性质可以解决很多问题,现举例说明,例20 如图,ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F求证:(1);(2)例21 如果ABC的三边长分别为a、b、c,它的内切圆I半径为r,那么ABC的面积为( ). 答案:BA BC D七、阴影部分面积的求值技巧求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解但在转化过程中又有许多方法本文精选几个题,介绍几种常用方法1直接法当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算例22 如图,在矩形ABCD中,AB=1,AD=

10、,以BC的中点E为圆心的与AD相切于点P,则图中阴影部分的面积为( ) 答案:DA B C D2和差法当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算例23 如图,AB和AC是0的切线,B、C为切点,BAC=60,0的半径为1,则阴影部分的面积是( ) 答案:BA B C D3割补法把不规则的图形割补成规则图形,然后求面积例24 如图,正方形ABCD的顶点A是正方形EFGH的中心,EF=6 cm,则图中的阴影部分的面积为_答案:9 cm24等积变形法把所求阴影部分的图形进行适当的等积变形,即可找出与它面积相等的特殊图形,从而求出阴影部分面积例25 如图,C、

11、D两点是半圆周上的三等分点,圆的半径为R,求阴影部分的面积5平移法把图形做适当的平移,然后再计算面积例26 如图,CD是半圆0的直径,半圆0的弦AB与半圆O 相切,点O 在CD上,且ABCD,AB4,则阴影部分的面积是(结果保留)答案:2 6整体法例27 如图,正方形的边长为a,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是( ) 答案:CA BC D7折叠法例28 (2005河南实验区)如图,半圆A和半圆B均与y轴相切于点0,其直径CD,EF均和x轴垂直,以0为顶点的两条抛物线分别经过点C、E和点D、F,则图中阴影部分的面积是_答案:8聚零为整法例29 (2005山西实验区)如

12、图所示,将半径为2 cm的0分割成十个区域,其中弦AB、CD关于点0对称,EF、GH关于点0对称,连结PM,则图中阴影部分的面积是_(结果用表示)答案:2八、圆中辅助线大集合圆是初中重点内容,是中考必考内容关于圆的大部分题目,常需作辅助线来求解现对圆中辅助线的作法归纳总结如下:1、有关弦的问题,常做其弦心距,构造直角三角形例30 (2006南京市)如图,矩形ABCD与圆心在AB上的O交于点G、B、F、E,GB=8 cm,AG1 cm,DE2 cm,则EF_cm答案:62、有关直径问题,常做直径所对的圆周角例31 (2006济宁市)如图,在ABC中,C=90,以BC上一点0为圆心,以OB为半径的

13、圆交AB于点M,交BC于点N(1)求证:(2)如果CM是0的切线,N为OC的中点,当AC3时,求AB的值答案:63、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系例32 (2006黄冈市)如图,AB、AC分别是0的直径和弦,点D为劣弧AC上一点,弦ED分别交0于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P(1)若PCPF,求证:ABED(2)点D在劣弧的什么位置时,才能使AD2DEDF,为什么?4、两圆相切,常做过切点的公切线或连心线,充分利用连心线必过切点等定理例33 (2005太原市)如图,02与半圆Ol内切于点C,与半圆的直径AB切于D

14、,若AB=6,02的半径为1,则ABC的度数为_答案:75C、数学思想方法与中考能力要求数学思想和方法是数学的血液和精髓,是解决数学问题的有力武器,是数学的灵魂因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高数学思维水平,提高数学能力,运用数学知识解决实际问题的有力保证,因此,我们在学习中必须重视数学思想在解题中的应用一、数形结合思想数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合通过对图形的认识,数形结合的转化,可培养同学们思维的灵活性、形象性,使问题化难为易,化抽象为具体例1 MN是半圆直径,点A是的一个三等分点,点B是的中点,P是直径MN

15、上的一动点,0的半径是1,求AP+BP的最小值答案: 二、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知例2 如图,以0的直径BC为一边作等边ABC,AB、AC交0于D、E两点,试说明BD=DE=EC在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量三、分类思想所谓分类思想,就是当被研究的问题包含多种可能情况,不能一概而论时,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.

16、例3 0的直径AB=2 cm,过点A的两条弦AC=cm,AD=cm,求CAD所夹的圆内部分的面积答案:cm2或cm2 在圆中有许多分类讨论的题目,希望同学们做题时,要全面、缜密,杜绝“会而不对,对而不全”的现象四、方程思想通过对问题的观察、分析、判断,将问题化归为方程问题,利用方程的性质和实际问题与方程的互相转化达到解决问题的目的例4 如图,AB是0的直径,点P在BA的延长线上,弦CDAB,垂足为E,且PC是O的切线,若OE:EA=1:2,PA6,求0的半径答案:3五、函数思想例5 (2005梅州市)如图,RtABC中,ACB=90,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),

17、设PCx,点P到AB的距离为y(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围例6 (2006烟台)如图,从0外一点A作0的切线AB、AC,切点分别为B、C,且0直径BD6,连结CD、AO. (1)求证:CDAO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD11,求AB的长其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。二培训的及要求培训目的安全生产目标责任书为了

18、进一步落实安全生产责任制,做到“责、权、利”相结合,根据我公司2015年度安全生产目标的内容,现与财务部签订如下安全生产目标:一、目标值:1、全年人身死亡事故为零,重伤事故为零,轻伤人数为零。2、现金安全保管,不发生盗窃事故。3、每月足额提取安全生产费用,保障安全生产投入资金的到位。4、安全培训合格率为100%。二、本单位安全工作上必须做到以下内容: 1、对本单位的安全生产负直接领导责任,必须模范遵守公司的各项安全管理制度,不发布与公司安全管理制度相抵触的指令,严格履行本人的安全职责,确保安全责任制在本单位全面落实,并全力支持安全工作。 2、保证公司各项安全管理制度和管理办法在本单位内全面实施

19、,并自觉接受公司安全部门的监督和管理。 3、在确保安全的前提下组织生产,始终把安全工作放在首位,当“安全与交货期、质量”发生矛盾时,坚持安全第一的原则。 4、参加生产碰头会时,首先汇报本单位的安全生产情况和安全问题落实情况;在安排本单位生产任务时,必须安排安全工作内容,并写入记录。 5、在公司及政府的安全检查中杜绝各类违章现象。 6、组织本部门积极参加安全检查,做到有检查、有整改,记录全。 7、以身作则,不违章指挥、不违章操作。对发现的各类违章现象负有查禁的责任,同时要予以查处。 8、虚心接受员工提出的问题,杜绝不接受或盲目指挥;9、发生事故,应立即报告主管领导,按照“四不放过”的原则召开事故分析会,提出整改措施和对责任者的处理意见,并填写事故登记表,严禁隐瞒不报或降低对责任者的处罚标准。 10、必须按规定对单位员工进行培训和新员工上岗教育;11、严格执行公司安全生产十六项禁令,保证本单位所有人员不违章作业。 三、 安全奖惩: 1、对于全年实现安全目标的按照公司生产现场管理规定和工作说明书进行考核奖励;对于未实现安全目标的按照公司规定进行处罚。 2、每月接受主管领导指派人员对安全生产责任状的落11郭氏数学

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服