1、2022版高考数学一轮复习 课后限时集训 45 立体几何中的向量方法2022版高考数学一轮复习 课后限时集训 45 立体几何中的向量方法年级:姓名:课后限时集训(四十五)立体几何中的向量方法建议用时:40分钟一、选择题1若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A120B60 C30D60或30C设直线l与平面所成的角为,直线l与平面的法向量的夹角为.则sin |cos |cos 120|.又090,30.2(2020江西省五校协作联考)如图,圆锥的底面直径AB4,高OC2,D为底面圆周上的一点,且AOD,则直线AD与BC所成的角为()A.B C.DB如图
2、,过点O作OEAB交底面圆于E,分别以OE,OB,OC所在直线为x,y,z轴建立空间直角坐标系,因为AOD,所以BOD,则D(,1,0),A(0,2,0),B(0,2,0),C(0,0,2),(,3,0),(0,2,2),所以cos,则直线AD与BC所成的角为,故选B.3如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()AB CDA设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量(2,2,1),(0,2,1),由向量的夹角公式得cos,.4在直三棱柱ABCA1B1C
3、1中,AB1,AC2,BC,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A30B45 C60D90A由已知AB2BC2AC2,得ABBC.以B为原点,分别以BC,BA,BB1所在直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,设AA12a,则A(0,1,0),C(,0,0),D,E(0,0,a),所以,平面BB1C1C的一个法向量为n(0,1,0),cos,n,n60,所以直线DE与平面BB1C1C所成的角为30.故选A.5设正方体ABCDA1B1C1D1的棱长为2,则点D1到平面A1BD的距离是()AB CDD如图建立坐标系,则D1(0,0,2),A1(2
4、,0,2),B(2,2,0),(2,0,0),(2,2,0),(2,0,2)设平面A1BD的法向量为n(x,y,z),则令z1,得n(1,1,1)D1到平面A1BD的距离d.6如图,在正四棱柱ABCDA1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为()A2B3C4D5C以D为原点,以DA,DC,DD1为坐标轴建立空间坐标系如图所示,设DD1a,则A(2,0,0),C(0,2,0),D1(0,0,a),C1(0,2,a),则(2,2,0),(2,0,a),(0,0,a),设平面ACD1的法向量为n(x,y,z),则令x1可得n,故cosn,.直线CC1
5、与平面ACD1所成角的正弦值为,解得a4.故选C.二、填空题7在底面是直角梯形的四棱锥SABCD中,ABC90,ADBC,SA平面ABCD,SAABBC1,AD,则平面SCD与平面SAB所成锐二面角的余弦值是_如图所示,建立空间直角坐标系,则依题意可知,D,C(1,1,0),S(0,0,1),可知是平面SAB的一个法向量设平面SCD的一个法向量n(x,y,z),因为,所以即令x2,则有y1,z1,所以n(2,1,1)设平面SCD与平面SAB所成的锐二面角为,则cos .8.如图所示,四棱锥PABCD中,PD底面ABCD,底面ABCD是边长为2的正方形,PD2,E是棱PB的中点,M是棱PC上的动
6、点,当直线PA与直线EM所成的角为60时,那么线段PM的长度是_如图建立空间直角坐标系,则A(2,0,0),P(0,0,2),B(2,2,0),E是棱PB的中点,E(1,1,1),设M(0,2m,m),则,解得m,M,PM.9.如图,平面ABCD平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AFADa,G是EF的中点,则GB与平面AGC所成角的正弦值为_如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),(a,a,0),(0,2a,2a),(a,a,0),设平面AGC的法向量为n1(x1,y1,1),由n1(1,1
7、,1)sin .三、解答题10(2020浙江宁波二模)中国古代数学经典九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称为“鳖臑”在如图所示的阳马PABCD中, 底面ABCD是矩形PA平面ABCD,PAAD2,AB,以AC的中点O为球心,AC为直径的球面交PD于点M(异于点D),交PC于点N(异于点C)(1)证明:AM平面PCD,并判断四面体MCDA是否是鳖臑?若是,写出它每个面的直角(只需写出结论);若不是,请说明理由(2)求直线ON与平面ACM所成角的正弦值解(1)因为AC是球的直径,所以AMMC,又PA平面ABCD,所以CDPA,又CD
8、AD,所以CD平面PAD,所以CDAM,所以AM平面PCD.四面体MCDA是鳖臑它的每个面的直角分别是AMC,AMD,ADC,MDC.(2)如图,以A为原点,分别以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系则B(,0,0),C(,2,0),D(0,2,0),P(0,0,2),O.由(1)知AMPD,又PAAD,则M为PD的中点,从而M(0,1,1)所以(,2,2),设(,2,2)(01),则(,22,2)由ANCN,得()2(22)4210260,由0得,即.所以.设平面ACM的法向量为n(x,y,z)由取x,则y1,z1,则n(,1,1)记ON与平面ACM所成的角为,则sin
9、.所以直线ON与平面ACM所成角的正弦值为.11(2020安徽五校联考)如图,已知四棱锥PABCD的底面ABCD是等腰梯形,ABCD,ACBDO,PBAC,PAPBAB2CD2,AC3.(1)证明:平面PBD平面ABCD;(2)点E是棱PC上一点,且OE平面PAD,求二面角EOBA的正弦值解(1)证明:等腰梯形ABCD中,OABOCD,2,又AC3,OA2,OB2,OA2OB2AB2,OAOB,即ACBD.又PBAC,且BDPBB,AC平面PBD.又AC平面ABCD,平面PBD平面ABCD.(2)连接PO,如图,由(1)知,AC平面PBD,ACPO,PO2,PO2OB2PB2,即POOB.以O
10、A,OB,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0),A(2,0,0),B(0,2,0),P(0,0,2),平面AOB的一个法向量为m(0,0,1),OE平面PAD,OE平面PAC,平面PAC平面PADPA,OEPA.设平面EOB的法向量为n(x,y,z),则n,则y0,nn(x,y,z)(2,0,2)0xz,令x1,则n(1,0,1),cosm,n,sinm,n,所求二面角EOBA的正弦值是.1(2020连云港模拟)九章算术中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑PABC中,PA平面ABC,ABBC,且PAABBC1,则二面角APCB的大小是(
11、)A30B45 C60D90C在鳖臑PABC中,PA平面ABC,ABBC,且PAABBC1,以B为原点,BC为x轴,BA为y轴,过B作平面ABC的垂线为z轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),B(0,0,0),P(0,1,1),(0,0,1),(0,1,1),(1,1,1),设平面PAC的法向量n(x,y,z),则取x1,得n(1,1,0),设平面PBC的法向量m(a,b,c),则取b1,得m(0,1,1),设二面角APCB的大小为,则cos ,60.二面角APCB的大小为60.故选C.2(2020宣城二模)如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线
12、Ox,Oy,Oz上,则在下列命题中,错误的为()AOABC是正三棱锥B二面角DOBA的平面角为C直线AD与直线OB所成角为D直线OD平面ABCB正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,在A中,ACABBC,OAOBOC,OABC是正三棱锥,故A正确;在B中,设OB1,则A(1,0,0),B(0,1,0),D(1,1,1),O(0,0,0),(1,1,1),(0,1,0),设平面OBD的法向量m(x,y,z),则取x1,得m(1,0,1),平面OAB的法向量n(0,0,1),cosm,n,二面角DOBA的平面角为,故B错误;在C中,设OB1,则A(1,0,0)
13、,B(0,1,0),D(1,1,1),O(0,0,0),(0,1,1),(0,1,0),cos,直线AD与直线OB所成角为,故C正确;在D中,设OB1,则A(1,0,0),B(0,1,0),D(1,1,1),O(0,0,0),C(0,0,1),(1,1,1),(1,1,0),(1,0,1),0,0,ODAB,ODAC,ABACA,直线OD平面ABC,故D正确故选B.3(2020厦门模拟)如图,在三棱柱ABCA1B1C1中,平面ABC平面ACC1A1,ABC为正三角形,D为线段BB1的中点(1)证明:平面ADC1平面ACC1A1;(2)若AA1与平面ABC所成角的大小为60,AA1AC,求二面角
14、ADC1B1的余弦值解(1)证明:设AC,AC1的中点分别为M,O,连接BM,MO,DO,ABC为正三角形,BMAC.平面ABC平面ACC1A1,平面ABC平面ACC1A1AC,BM平面ABC,BM平面ACC1A1.M,O分别为AC,AC1的中点,MO綊CC1,在棱柱ABCA1B1C1中,BB1綊CC1,又D为BB1的中点,BD綊CC1,MO綊BD,四边形BMOD为平行四边形,DOBM ,DO平面ACC1A1,DO平面ADC1,平面ADC1平面ACC1A1.(2)平面ACC1A1平面ABC,A1在平面ABC内的射影落在AC上,A1AC为AA1与平面ABC所成的角,故A1AC60,连接A1O,A
15、A1AC,则A1OAO,设AA12,则AO,A1O1,以O为原点,分别以OA,OA1,OD所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系, 则A(,0,0),D(0,0,),C1(,0,0),C(0,1,0),B1,(,0,),平面ACC1A1平面ADC1,平面ACC1A1平面ADC1AC1,OA1AC1,OA1平面ADC1,设平面ADC1的一个法向量为(0,1,0),设平面B1DC1的一个法向量为m(x,y,z),则取m(1,1),cos,m,又二面角ADC1B1为钝角,故二面角ADC1B1的余弦值为.1(2020乐清期末)如图在三棱锥SABC中,SASBSC,且ASBBSCCSA,
16、M,N分别是AB和SC的中点,则异面直线SM与BN所成的角的余弦值为_,直线SM与面SAC所成角大小为_因为ASBBSCCSA,所以以S为坐标原点,SA,SB,SC为x,y,z轴建立空间直角坐标系(图略)设SASBSC2,则M(1,1,0),B(0,2,0),N(0,0,1),A(2,0,0),C(0,0,2)因为(1,1,0),(0,2,1),cos,所以异面直线SM与BN所成的角的余弦值为,面SAC一个法向量为(0,2,0),则由cos,得,即直线SM与面SAC所成角大小为.2结构不良试题(2020青岛模拟)试在PCBD,PCAB,PAPC三个条件中选两个条件补充在下面的横线处,使得PO面
17、ABCD成立,请说明理由,并在此条件下进一步解答该题:如图,在四棱锥PABCD中,ACBDO,底面ABCD为菱形,若_,且ABC60,异面直线PB与CD所成的角为60,求二面角APBC的余弦值解若选,由PO平面ABCD,知POAB,又PCAB,AB平面PAC,ABAC,BAC90,BCBA,这与底面是菱形矛盾,必不选,故选.下面证明:PO平面ABCD,四边形ABCD是菱形,ACBD,PCBD,PCACC,BD平面APC,PO平面APC,BDPO,PAPC,O为AC中点,POAC,又ACBDO,PO平面ABCD,以O为原点,OB,OC,OP的方向分别为x轴,y轴,z轴,建立空间直角坐标系,ABCD,PBA为异面直线PB与CD所成角,PBA60,在菱形ABCD中,设AB2,ABC60,OA1,OB,设POa,则PA,PB,在PBA中,由余弦定理得:PA2BA2BP22BABPcosPBA,a214a2322,解得a,A(0,1,0),B(,0,0),C(0,1,0),P(0,0,),设平面ABP的法向量n(x,y,z),(,1,0),(0,1,),则取z1,得n(,1),设m(a,b,c)是平面CBP的法向量,(,1,0),(0,1,),由令c1,得m(,1),设二面角APBC的平面角为,cos ,二面角APBC的余弦值为.