1、2022届高考数学一轮复习 第6章 数列 第3节 等比数列及其前n项和教案 北师大版2022届高考数学一轮复习 第6章 数列 第3节 等比数列及其前n项和教案 北师大版年级:姓名:等比数列及其前n项和考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系1等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列这个常数叫做等比数列的公比,通常用字母q表示,定义的数学表达式为q(nN*,q为非
2、零常数)(2)等比中项:如果在a与b中间插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,G2ab,G,那么G叫作a与b的等比中项即:G是a与b的等比中项a,G,b成等比数列G2ab.2等比数列的有关公式(1)通项公式:ana1qn1amqnm.(2)前n项和公式:Sn等比数列的常用性质(1)在等比数列an中,若mnpq2k(m,n,p,q,kN*),则amanapaqa.(2)若数列an,bn(项数相同)是等比数列,则an(0),a,anbn,仍然是等比数列(3)等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n仍成等比数列,其公比为qn,q1且n为偶数时除外一、易
3、错易误辨析(正确的打“”,错误的打“”)(1)满足an1qan(nN*,q为常数)的数列an为等比数列()(2)G为a,b的等比中项G2ab.()(3)若an为等比数列,bna2n1a2n,则数列bn也是等比数列()(4)数列an的通项公式是anan,则其前n项和为Sn.()(5)数列an为等比数列,则S4,S8S4,S12S8成等比数列()答案(1)(2)(3)(4)(5)二、教材习题衍生1在等比数列an中,a32,a78,则a5等于()A5B5 C4D4Caa3a72816,a54.又a5a3q20,a54.2在等比数列an中,a3,S3,则a2的值为()AB3 CD3或D由S3a1a2a
4、3a3(q2q11),得q2q113,即2q2q10,解得q1或q.a2或3.故选D.3在数列an中,a12,an12an,Sn为an的前n项和若Sn126,则n_.6a12,an12an,数列an是首项为2,公比为2的等比数列又Sn126,126,解得n6.4一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机_秒,该病毒占据内存8 GB(1 GB210 MB)39由题意可知,病毒每复制一次所占内存的大小构成一等比数列an,且a12,q2,an2n,则2n8210213,n13.即病毒共复制了13次所需时间为13339(秒) 考点一
5、等比数列基本量的运算 等比数列基本量运算的解题策略(1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已知其中三个就能求另外两个(简称“知三求二”)(2)运用等比数列的前n项和公式时,注意分q1和q1两类分别讨论1(2020成都模拟)设正项等比数列an的前n项和为Sn,若S23,S415,则公比q等于()A2B3 C4D5AS23,S415,q1,由得q24,又q0,q2.故选A.2(2020全国卷)记Sn为等比数列an的前n项和,若a5a312,a6a424,则()A2n1B221n C22n1D21n1B法一:设等比数列an的公比为q,则由解得所以Sn2n1,ana
6、1qn12n1,所以221n,故选B.法二:设等比数列an的公比为q,因为2,所以q2,所以221n,故选B.3(2018全国卷)等比数列an中,a11,a54a3.(1)求an的通项公式;(2)记Sn为an的前n项和,若Sm63,求m.解(1)设an的公比为q,由题设得anqn1.由已知得q44q2,解得q0(舍去),q2或q2.故an(2)n1或an2n1(nN*)(2)若an(2)n1,则Sn.由Sm63得(2)m188,此方程没有正整数解若an2n1,则Sn2n1.由Sm63得2m64,解得m6.综上,m6.点评:抓住基本量a1,q,借用方程思想求解是解答此类问题的关键,在套用等比数列
7、求和公式解题时,务必注意讨论公比q是否为1. 考点二等比数列的判定与证明 判定一个数列为等比数列的常见方法典例1(2020南昌模拟)已知数列an,bn满足a11,b1,2an1anbn,2bn1anbn.(1)证明:数列anb n,anbn为等比数列;(2)记Sn为数列an的前n项和,证明:Sn.证明(1)依题意,有两式相加,得an1bn1(anbn)又a1b10,anbn是首项为,公比为的等比数列,两式相减,得an1bn1(anbn)又a1b10,anbn是首项为,公比为的等比数列(2)由(1)得,anbnn1,anbnn1,得,annn,故Sn.点评:本例以数列的递推关系为载体,在考查等比
8、数列判定方式的同时考查方程思想,学会从结论入手寻找解题思路是该问题的一个思维亮点1已知数列an的前n项和为Sn,且Sn2an3n(nN*)(1)求a1,a2,a3的值;(2)是否存在常数,使得an为等比数列?若存在,求出的值和通项公式an,若不存在,请说明理由解(1)当n1时,S1a12a13,解得a13,当n2时,S2a1a22a26,解得a29,当n3时,S3a1a2a32a39,解得a321.(2)假设an是等比数列,则(a2)2(a1)(a3),即(9)2(3)(21),解得3.下面证明an3为等比数列:Sn2an3n,Sn12an13n3,an1Sn1Sn2an12an3,即2an3
9、an1,2(an3)an13,2,存在3,使得数列an3是首项为a136,公比为2的等比数列an362n1,即an3(2n1)(nN*)2(2018全国卷)已知数列an满足a11,nan12(n1)an.设bn.(1)求b1,b2,b3;(2)判断数列bn是否为等比数列,并说明理由;(3)求an的通项公式解(1)由条件可得an1an.将n1代入得,a24a1,而a11,所以a24.将n2代入得,a33a2,所以a312.从而b11,b22,b34.(2)bn是首项为1,公比为2的等比数列由条件可得,即bn12bn,又b11,所以bn是首项为1,公比为2的等比数列(3)由(2)可得2n1,所以a
10、nn2n1. 考点三等比数列性质的应用 应用等比数列性质的两个关注点典例2(1)已知数列an为等比数列,a4a72,a5a68,则a1a10等于()A7B5 C5D7(2)设Sn是等比数列an的前n项和,若3,则()A2 B C D1或2(3)已知等比数列an共有2n项,其和为240,且奇数项的和比偶数项的和大80,则公比q_.(1)D(2)B(3)2(1)法一:(基本量法)设数列an的公比为q,则由题意得所以或所以a1a10a1(1q9)7.法二:(性质法)由解得或所以或所以a1a10a1(1q9)7.(2)设S2k,S43k,数列an为等比数列,S2,S4S2,S6S4也为等比数列,又S2
11、k,S4S22k,S6S44k,S67k,故选B.(3)由题意,得解得所以q2.点评:在解决等比数列的有关问题时,要注意挖掘隐含条件,特别关注项an或和Sn的下角标数字间的内在关系,活用性质,减少运算量,提高解题速度1已知数列an是等比数列,若a21,a5,则a1a2a2a3anan1(nN*)的最小值为()AB1 C2D3C由已知得数列an的公比满足q3,解得q,a12,a3,故数列anan1是以2为首项,公比为的等比数列,a1a2a2a3anan1,故选C.2等比数列an满足an0,且a2a84,则log2a1log2a2log2a3log2a9_.9由题意可得a2a8a4,a50,所以a
12、52,则原式log2(a1a2a9)9log2a59.数学文化1数列与数学文化纵观近几年高考,以数学文化为背景的数列问题,层出不穷,让人耳目一新,同时它也使考生们受困于背景陌生,阅读受阻,本专题通过对典型考题的分析,让考生提高审题能力,增加对数学文化的认识,进而加深对数学文化的理解,提升数学核心素养.等差数列中的数学文化(2020葫芦岛一模)我国古代名著九章算术中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤斩末一尺,重二斤”意思是:“现有一根金锤,长度为5尺,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列”则下列说法正确的是()A该金锤中间一尺重3.5斤B中
13、间三尺的重量和是头尾两尺重量和的3倍C该金锤的重量为15斤D该金锤相邻两尺的重量之差的为1.5斤C设该等差数列为an,公差为d,a52,a14,则44d2,解得d.an4(n1).a33,S515,a2a3a439,a5a16,故选C.评析以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n项和等(2020湖南六校联考)“珠算之父”程大位是我国明代著名的数学家,他的应用巨著算法统宗中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平
14、,下头三节六升六,上梢四节四升四,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”(注六升六:6.6升,次第盛:盛米容积依次相差同一数量)用你所学的数学知识求得中间两节竹的容积为()A3.4升B2.4升 C2.3升D3.6升A设从下至上各节容积分别为a1,a2,a9为等差数列,公差d,则由题意可知,故解得,d0.2,a12.4,所以中间节a4a51.81.63.4.故选A.等比数列中的数学文化(2020荆州一模)十二平均律是我国明代音乐理论家和数学家朱载堉发明的明万历十二年(公元1584年),他写成律学新说,提出了十二平均律的理论,这一成果被意大利传教士利玛窦通过丝绸之路带到了
15、西方,对西方音乐产生了深远的影响十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列,依此规则,插入的第四个数应为()B根据题意,设这个等比数列为an,设其公比为q,又由a11,a132,则q122,插入的第四个数应a5a1q4q42,故选B.评析以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n项和等(2020湖北模拟)某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个
16、实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1 700万元则该研究所改建这十个实验室投入的总费用最多需要()A3 233万元B4 706万元C4 709万元D4 808万元C设每个实验室的装修费用为x万元,设备费为an万元,n1,2,3,10,则解得a13,q2,a103291 536,依题意:x1 5361 700,解得x164.该研究所改建这十个实验室投入的总费用最多需要: 10xa1a2a1010x10x
17、3 0694 709.故选C.递推数列中的数学文化九连环是我国古代至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数,决定解开圆环的个数在某种玩法中,用an表示解下n(n9,nN*)个圆环所需的多少移动次数,数列an满足a11,且an则解下5个环所需的最少移动次数为()A7B10 C16D22C数列an满足a11,且an所以a21,a34,a47,a516.故选C.评析以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数
18、学文化背景,实质就是已知a11,且an求a5的问题(2020邯郸二模)数学家也有许多美丽的错误,如法国数学家费马于1640年提出了Fn22n1(n0,1,2,)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F5641*6700417,不是质数现设an=log4(Fn-1)(n=1,2,),Sn表示数列an的前n项和若32Sn=63an,则n= ()A5B6 C7D8B因为Fn22n1(n0,1,2,),所以anlog4(Fn1)log4(22n11)log422n2n1,所以an是等比数列,首项为1,公比为2,所以Sn2n1.所以32(2n1)632n1,解得n6,故选B.周期数列
19、中的数学文化意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,即F(1)F(2)1,F(n)F(n1)F(n2)(n3,nN*)此数列在现代物理、化学等方面都有着广泛的应用若此数列被2除后的余数构成一个新数列an,则数列an的前2 021项的和为()A672B673 C1 348D2 021C由于an是数列1,1,2,3,5,8,13,21,34,55,各项除以2的余数,故an为1,1,0,1,1,0,1,1,0,1,所以an是周期为3的周期数列,且一个周期中的三项之和为1102.因为2 02167332,所以数列an的前2 021项的和为6
20、732111 348.故选C.评析以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果(2020全国卷)01周期序列在通信技术中有着重要应用,若序列a1a2an满足ai0,1(i1,2,),且存在正整数m,使得aimai(i1,2,)成立,则称其为01周期序列,并称满足aimai(i1,2,)的最小正整数m为这个序列的周期对于周期为m的01序列a1a2an,C(k)aiaik(k1,2,m1)是描述其性质的重要指标,下列周期为5的01序列中,满足C(k)(k1,2,3,4)的序列是()A11010B11011C10001D11001C对于A,因为C(1),C(2),不满足C(k),故A不正确;对于B,因为C(1),不满足C(k),故B不正确;对于C,因为C(1),C(2)0,C(3)0,C(4),满足C(k),故C正确;对于D,因为C(1),不满足C(k),故D不正确综上所述,故选C.