1、个人收集整理 勿做商业用途第十三讲:2013年高考概率与统计命题热点研讨(1)主讲人:孟老师第一部分:孟老师对考点的研讨高考对本部分内容的考查呈现以下特点:概率是高中数学中与现实生活联系非常密切的一部分,在历年的高考中占很大的比重;考查内容:(1)等可能性事件;(2)互斥事件有一个发生的概率;(3)相互独立事件同时发生的概率;(4)对立事件;(5)独立重复试验;考查形式:选择题、填空题、解答题都有可能出现。难度较大,是高考中的中档题.预计:典型例题可能有题目涉及,出现在选择填空中的可能性较大。概率与统计包括随机事件、等可能事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立
2、重复试验与二项分布,超几何分布,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等。概率与统计是高中数学的重要学习内容,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,应引起足够的重视.1.区分题目属于哪一种概率,针对不同的概率类型灵活使用不同的方法.2.等可能性事件的概率是难点之一,区分好“排列型”、“组合型”、“乘方型”。3.独立重复试验是难点和重点,也是高考丢分的重要因素之一.根据对以往命题的研究和探讨,概率与统计知识在选择、填空、解答题这三种类型的命题上都有出现,分值所占的比重还是比较大的.希望能引起同学们的高度重视。概率与统计的引入,拓广了应用问
3、题的取材范围,概率的计算、离散型随机变量的分布列和数学期望的计算机应用都是考察应用意识的良好的素材。在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题。以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基本知识为工具,考察队概率事件的识别及概率计算.解答概率统计时要注意分类与整合、化归与转化思想的运用。第二部分:孟老师对热点的透视考察概率与统计知识点的高考试题,既有自身概念的思想体现,如:样本估计总体的思想、假设检验的思想;又有必然与或然的思想、函数与方程的思想和数形结合的思想.由此可以拓宽学
4、生的视野,考察综合运用的能力.对于概率与统计,近几年的高考呈现出一种开放性的趋势.记得在概率刚刚并入高考的时候,概率只是考一个简单古典概型,但是发展到现在,概率的命题已经是五花八门的.并且文科和理科的命题,有以前的截然不同,发展到现在的逐渐的糅合在一起。概率与统计作为考察考生应用意识的重要载体,已经成为近几年新课标高考的一大亮点和热点,它与其他知识融合、渗透,情景新颖,充分体现了在知识交汇点处设计试题的高考命题的指导思想.概率与统计和现实生活关系密切,是考察数据处理能力、应用意识、必然与或然思想的主要素材,高考命题必然会充分考虑到这些因素,命制一定数量的形式多样的试题达到上述目的.我们来具体的
5、分析一下有那些考点在统计部分,第一个考点是抽样方法。抽样方法中的分层抽样和系统抽样是一个重点,考的频率比较高.抽样方法中的系统抽样是同学们要特别注意的,系统抽样有一个类似于等差数列的公式,这一个想必凡是上过高三的学生都是非常熟悉的.在统计中,对于视图的考察是比较频繁的。首先说频率分布直方图.频率分布直方图有一串来源:频率分布表-频率分布直方图频率分布折线图-总体密度曲线-正态分布图像,这几个的联系与区别,同学们心中要有一个数.第二个视图是茎叶图,近两年考察的也比较多.统计的第三个考点是线性回归方程,里面有一些系数公式同学们要有所了解.这个里面还有相关系数、残差等等一些知识。第四个考点就是独立性
6、检验,这个考点已经呈现出井喷式的考察.对于概率的考察主要是:选择题和填空题主要考:超几何分布、二项分布、两点分布、正态分布;解答题主要考:二项分布、超几何分布.下面我们就这些考点进行进一步的分析和讲解。该部分的命题点多,命题北京广阔,命题具有很大的灵活性,但基本的态势还是相对固定的.即统计以考察抽样方法、样本的频率分布、样本特征数的计算为主,概率以考察概率计算为主,常常和实际问题相结合,期间要注意理解实际问题的实际意义,使之和概率计算对应起来,只有这样才能有效的解决问题.高考试题中的概率与统计的解答题往往具有一定的综合性,一般以实际应用题的方式吧随机变量的概念、概率计算、随机变量的均值与方差计
7、算综合起来,在复习中要多注意这类问题的求解方法。孟老师热点预测1随机抽样和用样本估计总体1考察抽样方法及抽样中的计算 (2012深圳模拟)某学校在校学生2000人,学校举行跑步和登山比赛。每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:高一年级高二年级高三年级跑步人数abc登山人数xyz其中abc253,全校参加登山的人数占总人数的。为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取A.15人 B。30人 C.40人 D.45人解析:由题意,全校参加跑步的人数占总人数的,高三年级参加跑步的总人数为20004
8、50,由分层抽样的特征,得高三年级参加跑步的学生中应抽取45045(人).答案:D2考察频率分布直方图的视图与计算 (2011湖北卷)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间10,12)内的频数为A.18 B.36 C。54 D。72解析:由图可知,在区间10,12)内的频率为1(0。020。050。150。19)20。18,其频数为2000.1836。答案:B3.考察茎叶图的视图与计算(2012南昌市高三模拟)甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示如图,若甲、乙小组的平均成绩分别是x甲,x乙,则下列
9、结论正确的是A。x甲x乙,甲比乙成绩稳定 B.x甲x乙,乙比甲成绩稳定C。x甲x乙,甲比乙成绩稳定 D.x甲2.706,有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关孟老师热点预测3概率 1.古典概型(2008年四川延考卷)在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为(A) (B) (C) (D)解:因文艺书只有2本,所以选3本必有科技书。问题等价于选3本书有文艺书的概率:2。几何概型1(2011年福建高考)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率
10、等于A。1/4 B.1/3 C。1/2 D.2/3答案:C2(2012广东肇庆市高三模拟)在区间(0,上随机取一个数x,则事件“sinxcosx1”发生的概率为A。 B。 C。 D。解析:由题意知,此概率符合几何概型所有基本事件包含的区域长度为,设A表示取出的x满足sinxcosx1这样的事件,对条件变形为sin(x)即事件A包含的区域长度为P(A)。答案:C3(2012河南省高三第一次质量调研)在区间0,1上任意取两个实数a,b,则函数f(x)x3axb在区间1,1上有且仅有一个零点的概率为A. B. C。 D。解析:由已知得当a0时,f(x)x2a0,函数f(x)在1,1内是增函数,因此由
11、f(x)在1,1上有且仅有一个零点得,即。在坐标平面aOb中,分别画出不等式组与不等式组表示的平面区域,结合图形易知,这两个不等式组表示的平面区域的公共区域的面积等于12(1),而不等式组表示的平面区域的面积为121,因此所求的概率等于,选A。答案:A孟老师热点预测4随机变量及其分布1。离散型随机变量的概率的分布列(2011年湖南高考)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。()求当天商品
12、不进货的概率;()记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。解析:(I)P(“当天商店不进货”)=P(“当天商品销售量为0件)+P(“当天商品销售量1件)=。(II)由题意知,的可能取值为2,3。;故的分布列为23的数学期望为。2。超几何分布(2011年江西高考)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示
13、此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力(1)求X的分布列;(2)求此员工月工资的期望.解:(1)X的所有可能取值为:0,1,2,3,4即X01234P(2)令Y表示新录用员工的月工资,则Y的所有可能取值为2100,2800,3500所以新录用员工月工资的期望为2280元.3。事件的独立性和n次独立重复试验模型(2011年山东高考)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0。5,0。5,假设各盘比赛结果相互独立.()求红队至少两名队员获胜的概率;()用表示红队队员获胜的总盘数,求的分布列和数学期望。解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则分别表示甲不胜A、乙不胜B,丙不胜C的事件.因为由对立事件的概率公式知红队至少两人获胜的事件有:由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为(II)由题意知可能的取值为0,1,2,3。又由(I)知是两两互斥事件,且各盘比赛的结果相互独立,因此由对立事件的概率公式得所以的分布列为:0123P0103504015因此15