已知函数,为的导数证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点分析:(1)设,则,在存在唯一极大值点的问题就转化为在有唯一零点,而唯一零点问题经常用零点存在性,即确定单调性及两端点处函数值异号。(2) 这是一个零点问题,经常转化为两函数交点问题,即。首先来画一下函数图象。从图象上可以大致确定零点一个为一个在区间上,我们只需证明其他区间无零点就可以了,很显然应该分四段讨论。解:(1)设,则,.当时,单调递减,而,可得在有唯一零点,设为.则当时,;当时,.所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点.(2) 的定义域为.(i)当时,由(1)知,在单调递增,而,所以当时,故在单调递减,又,从而是在的唯一零点.(ii)当时,由(1)知,在单调递增,在单调递减,而,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.又,所以当时,.从而,在没有零点.(iii)当时,所以在单调递减.而,所以在有唯一零点.(iv)当时,所以0,从而在没有零点.综上,有且仅有2个零点.