收藏 分销(赏)

汽轮机轴向位移和胀差.docx

上传人:小****库 文档编号:2106726 上传时间:2024-05-16 格式:DOCX 页数:12 大小:25.41KB
下载 相关 举报
汽轮机轴向位移和胀差.docx_第1页
第1页 / 共12页
汽轮机轴向位移和胀差.docx_第2页
第2页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、轴向位移轴向位移又叫串轴,就是沿着轴的方向上的位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是定子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零位。向发电机为正,反之为负,汽轮机转子沿轴向移动的距离就叫轴向位移。影响轴向位移的因素:1)负荷变化;2)叶片结垢严重;3)汽温变化;4)蒸汽流量变化;5)高压轴封漏汽大,影响轴承座温度的升高;6)频率变化;7)运行中叶片断落;8)水冲击;9)推力轴瓦磨损或损坏;10)抽汽停用,轴向推力变化;11)发电机转子窜动;12)高压汽封疏汽压调节变化;13)真空变化;14)电气式轴位移表受频率,电压的变化影响

2、;15)液压式轴位移表受主油泵出口油压,油温变化等影响。轴向推力增大的因素有(1)负载增加,则主蒸汽流量增大,各级整齐压差随之增大,使机组轴向推力增大。抽气供热式或背压式机组的最大轴向推力可能发生在某一中间负荷,因为机组除了电负荷增加外,还有供热负荷增加的影响因素。(2)主蒸汽参数降低,各级的反动度都将增大,使机组轴向推力增大。(3)隔板气封磨损,漏气量增加,使级间压差增大。(4)机组通流部分因蒸汽品质不佳而结垢时,相应级的叶片和叶轮前后压差将增大,使机组的轴向推力增加。(5)发生水冲击事故时,机组的轴向推力将明显增大。轴向位移增大的处理1) 当轴向位移增大时,应严密监控推力轴承的进、出口油温

3、、推力瓦金属温度、胀差及机组振动情况;2) 当轴向位移增大至报警值时,应报告管理人员,要求降低机组负荷;3) 若主、再热蒸汽参数异常,应恢复正常参数;4) 若系统周波变化大、发电机转子串动,应尽快恢复正常;5) 当轴向位移达1.0mm或+1.2mm时保护动作机组自动停机,否则手动紧急停机;6) 轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应报告管理人员,请示紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。必须经检查推力轴承、汽轮机通流部分无损坏后方可重新启动。机组的

4、轴向位移应保持在允许范围内,一般为0.81.0mm,超过这个数值就会引起动静部分发生摩擦碰撞,发生严重损坏事故,如轴弯曲,隔板和叶轮碎裂,汽轮机大批叶片折断等。转子轴向位移(也被成为窜轴)这一指标主要是用以监督推力承轴的工作状况。目前部分机组还装设了推力瓦油膜压力表,利用这些表计监视汽轮机推力瓦的工作状况和转子轴向位移的变化。汽轮机轴向位移停机保护值一般为推力瓦块乌金的厚度减0.10.2mm,其意义是当推力瓦乌金磨损熔化而瓦胎金属尚未触及推力盘时即跳闸停机,这样推力盘和机组内部都不致损坏,机组修复也比较容易。轴位移指的是轴的位移量,而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数

5、值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。根据汽缸分类又可分为高差、中差、低I差、低II差。胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度

6、和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。

7、差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。使胀差向正值增大的主要因素简述如下:1)启动时暖机时间太短,升速太快或升负荷太快。2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。5)机组启动时,进汽压力、

8、温度、流量等参数过高。6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。8)双层缸的夹层中流入冷汽(或冷水)。9)胀差指示器零点不准或触点磨损,引起数字偏差。10)多转子机组,相邻转子胀差变化带来的互相影响。11)真空变化的影响(真空降低,引起进入汽轮机的蒸汽流量增大)。12)转速变化的影响(转速降低)。13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。14)轴承油温太高。15)机组停机惰走过程中由于“泊桑效应”的影响。16)差胀指示表不准,或频率,电压变化影响。使胀差向负值增大的主要原因:

9、1)负荷迅速下降或突然甩负荷。2)主汽温骤减或启动时的进汽温度低于金属温度。3)水冲击。4)轴承油温太低。5)轴封汽温度太低。6)轴向位移变化。7)真空过高,相应排汽室温降低而影响。8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。9)双层汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。10)汽缸夹层加热装置汽温太高或流量较大,引起加热过度。11)滑销系统或轴承台板滑动卡涩,汽缸不缩回。12)差胀值示表不准,或频率,电压变化影响。正胀差 - 影响因素主要有:、蒸汽温升或温降速度大启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依

10、靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。汽轮机转子停止转动后,负胀差可能会更加发展,为此应当维持一定温度的轴封蒸汽,以免造成恶果。、负荷变化速度的影响当负荷变化时,各级蒸汽流量发生变化,特别是在低负荷范围内,各级蒸汽温度的变化较大,负荷增长速度愈快,蒸汽的温升速度也愈快与金属表向降负荷速度加快,汽缸和转子温升速度的差别愈大。负荷增加速度加快,正胀差增大;降负荷速度加快

11、,正胀差缩小,以致出现负胀差。、轴封供气温度的影响轴封供气对转子的轴封段和轴封体加热,由于轴封体是嵌在汽缸两端,其膨胀对汽缸轴同长度几乎没有影响,但转子轴封段的膨胀却影响转子的长度,因而使正胀差加大。由于轴封段占转子长度的比例较小,故对总胀差影响较小,可是轴封处的局部胀差却比较大。若轴封供气温度过高,则出现正胀差过大;反之,负胀差 过大。一般规定轴封气温度略高于轴封金属温度。、真空对低压胀差的影响真空降低,一方面排气温度升高,低压缸排气口压力升高,缸体内外压差减少,两者促进低压缸缸体膨胀,从而减少低压胀差。另一方面,若轴封气压不变,低压缸轴封段轴封气量减少,转子加热减弱,也使低压胀差减少。、环

12、境温度的影响低压胀差对环境温度较敏感。环境温度升高,低压胀差变小,环境温度降低,低压胀差升高。主要原因一方面是环境温度降低,低压缸冷却加剧(低压缸无保温);另一方面是循环水温度降低使真空升高,排气温度降低,缸温下降。经观察,在不同负荷下,变化规律是一样的。在同一负荷下,冬季跟夏季低压胀差相差 15%。、摩擦鼓风的影响在机组启动和低负荷阶段,蒸汽流量较小,而高中低压级内产生较大的鼓风摩擦损失(与转速三次方成正比),损失产生的热量被蒸汽吸收,使其温度升高。由于叶轮直接与蒸汽相摩擦,因此转子温度比汽缸温度高,故出现正胀差。随着转速升高,转子摩擦鼓风损失产生的热量相应加大,但此时由于流量增加,使产生的

13、 鼓风损失的级数相应减少,因此每千克蒸汽吸收摩擦鼓风损失产生的热量先随转速升高而增大,使高中低压缸正胀差增大,后又随转速升高而相应减少,对胀差的影响逐渐减少。轴向位移和胀差的危害 1泊桑效应影响机组低压胀差约10%,所以开机冲转前,低压胀差应保证10%以上。在停机过程中尽量减少低压胀差(最好控制在90以下),当低压胀差超过110%,必须紧急停机,这时随着转速下降,低压胀差会超过120%,在低转速区可能会有动静摩擦。 2在冬季低压胀差过高时,要注意轴封气母管压力,若压力过高可适当调低,也可用降低真空方法来减少低压胀差。冬季减少开窗的地方,这是冬季减少低压胀差有效措施。 3极热态启动时,轴封供气尽

14、量选择高温气源,辅气作为气源时,必须保证其温度控制在270左右,若温度太低,将造成高压轴封段大轴急剧冷却收缩,有可能导致前几级动静摩擦。 4冷态启动时,轴封气源高于大轴金属温度,大轴将局部受热伸长,出现较大的正胀差。因此要选择与轴封金属温度相匹配的气源,不拖延启动时间。低压胀差过大,可采用降低真空来调节,尽量提前冲转升速。机组启动阶段低压正胀差超过限值时,可破坏真空停轴封气,待胀差正常后重新启动。 5机组倒缸前,主蒸汽气温至少比高压缸金属温度高50以上,倒缸前应考虑轴向位移对高压胀差影响。 机组启停阶段胀差变化幅度大,影响因素多,调整难度大,因此要严格按规程操作,根据汽缸金属温度选择适当的冲转

15、参数,适当的升温升压曲线,确定合适升温速度,控制升速和暖机时间,带负荷后根据具体情况,及时分析和采取有效方法,才能有效控制胀差。机组启动时胀差变化的分析与控制汽轮机在启停过程中,转子与汽缸的热交换条件不同。因此,造成他们在轴向的膨胀也不一致,即出现相对膨胀。相对膨胀通常也称为胀差。胀差的大小表明了汽轮机轴向动静间隙的变化情况。监视胀差是机组启停过程中的一项重要任务。为避免轴向间隙变化而使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且胀差对汽轮机运行的影响应该有足够的认识。受热后汽缸是从“死点”向机头方向膨胀的,所以,胀差的信号发生器一般安装在汽缸相对基础的“死点”位置。胀差发信器安装在前轴

16、承箱座上。机组的启动按启动前汽轮机金属温度水平分为:冷态启动(金属温度150180度);温态启动(180度350度);热态启动(350度450度);极热态启动(450度以上)。现仅就常见的冷态启动和热态启动时机组胀差的变化与控制进行简单分析:在机组冷态启动过程中,胀差的变化和对胀差的控制大致分为以下几个阶段:1、汽封供汽抽真空阶段。从汽封供汽抽真空到转子冲转前胀差值是一直向正方向变化的。因为在加热或冷却过程中,转子温度升高或降低的速度都要比汽缸快,相应的膨胀或收缩的速度也要比汽缸快。在我们投入均压箱对汽封供汽时,汽封套受热后向两侧膨胀,对整个汽缸的膨胀影响不大。而与汽封相对应的转子主轴段受热后

17、则使转子伸长。汽封供热对转子伸长值的影响是由供汽温度来决定的,但加热时间也有影响。所以,冷态启动时均压箱的压力不宜过高,一般应保持在0.1MPA以下,而温度则应在250摄氏度左右。当抽气系统投入并开始抽真空后,如果胀差向正值变化过快,可以采取降低均压箱压力或适当提升凝汽器真空的方法,因为通过提升真空可以减少蒸汽在汽封中的滞留时间。总体上来说,冷态开机,汽封来汽温度和压力应该低一些,真空应该提升的快一点,在确保安全的前提下尽早达到冲转的条件。2、暖机升速阶段。从冲转到定速,胀差基本上继续上升。在这一阶段,蒸汽流量小,蒸汽主要在调节级内做功。中速暖机以后再升速时,胀差值才会有减小的趋势。这主要是因

18、为随着转速的升高,离心力增大,轴向的分力也增大了,而使转子变粗缩短。同时汽缸温度逐渐上升,气缸的膨胀速度也在上升,相对迟滞了转子的膨胀值。在冲转时,蒸汽的压力和温度都应适当低一些,但是温度要保持一定的过热度,冲转速率要低。在冲转过程当中要密切注意缸温的变化,此时如果胀差正值过高应稳定转速,或者降低真空,让蒸汽在汽缸中的滞留时间长一些,充分暖机。有时在暖机升速过程中,如果汽缸本体疏水调节不当也会影响到胀差,所以,开机时应当注意控制汽缸本体疏水。为了防止胀差表数据失真,我们还应当密切观察机组热膨胀和轴向位移的变化,通过热膨胀,轴向位移的对比来进一步判断胀差变化。同时严密监视机组振动情况,特别是跨越

19、临界转速时更为重要。3、定速和并列带负荷阶段。由于从升速到定速的时间较短,蒸汽温度和流量几乎不变化,对胀差的影响在定速后才能反映出来。定速后,胀差增加的幅度较大,持续的时间较长,特别是在发电机并网以后。在低负荷暖机阶段,蒸汽对转子和汽缸的加热比较剧烈。并网后,随着调节汽阀的开大,调节级的温度上升比较快,调节汽门的开启速度对胀差的影响比较大。也就是说,为了防止胀差变化过快,并网后应但在低负荷状态下暖机一段时间,具体的低负荷暖机时间由汽缸上、下壁温度,调节级温度和胀差的变化趋势来定。只有胀差值出现下降趋势而且比并网时的数值下降10%以后才能开始逐步提负荷,一旦胀差又出现上涨并且达到并网时的数值时就

20、应当适当的减缓升负荷速度甚至停止升负荷继续暖机。这样一直到机组负荷升至额定值。总的来说,影响机组胀差的因素主要有以下几点:暖机时间的长短,凝汽器真空的变化,轴封供汽温度的高低和供汽时间的长短,主蒸汽的温升、温降率,负荷变化的影响等。而冷态启动机组简单的说就是要做到:“调真空,稳供汽,缓升速,慢暖机。低负荷,不要急,缸温上,再去提”。一、汽轮机的泊桑效应泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗、变短,转速减小的时候而变细、变长。一般在启停机的时候由于低压缸的转子是最粗的,所以受泊桑效应最明显,是胀差变化的一个因素。比如打闸停机,转速降低,转子的离心力减少了,转子有变细变

21、长的趋势,所以胀差增大。二、汽轮机的鼓风摩擦所谓鼓风是指部分蒸汽通过末端部位的某一级时,蒸汽流速低于转子旋转的速度,与转子之间产生摩擦,这种现象称之鼓风,其摩擦损失就是鼓风损失,由于末端几级的蒸汽经过多级膨胀,在真空降低或进口蒸汽量减少时,在末端的某级进出口压差减小,蒸汽通过喷嘴后膨胀能力降低或者不膨胀,导致部分蒸汽从喷嘴中喷出的速度小于该点汽机转子的线速度,与转子产生摩擦。鼓风现象是在什么工况都有的,只不过正常运行时弱一点,空负荷、低真空时较为明显而已。所以尽量减少空负荷、有进汽并低真空的时间。鼓风磨擦产生的热量会使汽机低压缸中心上移,产生振动等。鼓风损失对差胀的影响要比泊桑来的小。低真空会使低压缸鼓风损失增大,排气温度升高。

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 职业教育

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服