资源描述
毕业设计论文
油杯加工工艺及夹具设计【2副】
所在学院
专 业
班 级
姓 名
学 号
指导老师
年 月 日
摘 要
油杯零件加工工艺及夹具设计是包括零件加工的工艺设计、工序设计以及专用夹具的设计三部分。在工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量;然后进行专用夹具的设计,选择设计出夹具的各个组成部件,如定位元件、夹紧元件、引导元件、夹具体与机床的连接部件以及其它部件;计算出夹具定位时产生的定位误差,分析夹具结构的合理性与不足之处,并在以后设计中注意改进。
关键词:工艺,工序,切削用量,夹紧,定位,误差
36
Abstract
A machining process and fixture design is the design process, including the design of bearing parts processing process design and the three part special fixture. In the process of design should first of all parts to analyze, understand parts of the process and then design a blank structure, and choose the good parts of the machining datum, designs the process routes of the parts; then the parts each step process dimension calculation, the key is to determine the process equipment and cutting the amount of each working procedure design; then a special fixture, fixture for the various components of a design, such as the connecting part positioning device, clamping element, a guide element, clamp and the machine tool and other components; the positioning error caused calculate fixture when positioning, analysis of the rationality and deficiency of fixture structure, pay attention to improving and will design in.
Keywords: process, process, cutting, clamping, positioning
目 录
摘 要 II
Abstract III
第1章 绪论 1
第2章 加工工艺规程设计 2
2.1 零件的分析 2
2.1.1 零件的作用 2
2.1.2 零件的工艺分析 2
2.2 油杯零件加工的主要问题和工艺过程设计所应采取的相应措施 3
2.2.1 孔和平面的加工顺序 3
2.2.2 孔系加工方案选择 3
2.3 油杯零件加工定位基准的选择 4
2.3.1 粗基准的选择 4
2.3.2 精基准的选择 4
2.4 油杯零件加工主要工序安排 4
2.5 机械加工余量、工序尺寸及毛坯尺寸的确定 6
2.6确定切削用量及基本工时(机动时间) 7
第3章 铣底面夹具设计设计 15
3.1 研究原始质料 15
3.2 定位、夹紧方案的选择 16
3.3 切削力及夹紧力的计算 16
3.4 误差分析与计算 17
3. 5 定向键与对刀装置设计 18
3.6 确定夹具体结构和总体结构 20
3.7夹具设计及操作的简要说明 21
第4章 钻孔夹具设计 22
4.1 研究原始质料 22
4.2 定位、夹紧方案的选择 22
4.3切削力及夹紧力的计算 22
4.4 误差分析与计算 25
4.5 夹具设计及操作的简要说明 26
总 结 27
参考文献 28
致 谢 29
全套设计请加 197216396或401339828
第1章 绪论
机械制造业是制造具有一定形状位置和尺寸的零件和产品,并把它们装备成机械装备的行业。机械制造业的产品既可以直接供人们使用,也可以为其它行业的生产提供装备,社会上有着各种各样的机械或机械制造业的产品。我们的生活离不开制造业,因此制造业是国民经济发展的重要行业,是一个国家或地区发展的重要基础及有力支柱。从某中意义上讲,机械制造水平的高低是衡量一个国家国民经济综合实力和科学技术水平的重要指标。
油杯零件加工工艺及钻床夹具设计是在学完了机械制图、机械制造技术基础、机械设计、机械工程材料等的基础下,进行的一个全面的考核。正确地解决一个零件在加工中的定位,夹紧以及工艺路线安排,工艺尺寸确定等问题,并设计出专用夹具,保证尺寸证零件的加工质量。本次设计也要培养自己的自学与创新能力。因此本次设计综合性和实践性强、涉及知识面广。所以在设计中既要注意基本概念、基本理论,又要注意生产实践的需要,只有将各种理论与生产实践相结合,才能很好的完成本次设计。
本次设计水平有限,其中难免有缺点错误,敬请老师们批评指正。
第2章 加工工艺规程设计
2.1 零件的分析
2.1.1 零件的作用
题目给出的零件是油杯零件。油杯零件的主要作用向内部加入油液,并保证正确安装。因此油杯零件的加工质量,不但直接影响的装配精度和运动精度,而且还会影响工作精度、使用性能和寿命。
,
2.1.2 零件的工艺分析
由油杯零件图可知。油杯零件是一个油杯零件,它的外表面上有4个平面需要进行加工。支承孔系在前后端面上。此外各表面上还需加工一系列孔。因此可将其分为三组加工表面。它们相互间有一定的位置要求。现分析如下:
(1)以底面为主要加工表面的加工面。这一组加工表面包括:底面的铣削加工;其中表面粗糙度要求为,
(2)以4-φ7孔为主要加工表面的加工面。
(3)以φ6孔为主要加工面。
2.2 油杯零件加工的主要问题和工艺过程设计所应采取的相应措施
由以上分析可知。该油杯零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,对于油杯零件来说,加工过程中的主要问题是保证孔的尺寸精度及位置精度,处理好孔和平面之间的相互关系。
由于的生产量很大。怎样满足生产率要求也是加工过程中的主要考虑因素。
2.2.1 孔和平面的加工顺序
油杯零件类零件的加工应遵循先面后孔的原则:即先加工油杯零件上的基准平面,以基准平面定位加工其他平面。然后再加工孔系。油杯零件的加工自然应遵循这个原则。这是因为平面的面积大,用平面定位可以确保定位可靠夹紧牢固,因而容易保证孔的加工精度。其次,先加工平面可以先切去铸件表面的凹凸不平。为提高孔的加工精度创造条件,便于对刀及调整,也有利于保护刀具。
油杯零件的加工工艺应遵循粗精加工分开的原则,将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。
2.2.2 孔系加工方案选择
油杯零件孔系加工方案,应选择能够满足孔系加工精度要求的加工方法及设备。除了从加工精度和加工效率两方面考虑以外,也要适当考虑经济因素。在满足精度要求及生产率的条件下,应选择价格最底的机床。
根据油杯零件图所示的油杯零件的精度要求和生产率要求,当前应选用在组合机床上用镗模法镗孔较为适宜。
(1)用镗模法镗孔
在大批量生产中,油杯零件孔系加工一般都在组合镗床上采用镗模法进行加工。镗模夹具是按照工件孔系的加工要求设计制造的。当镗刀杆通过镗套的引导进行镗孔时,镗模的精度就直接保证了关键孔系的精度。
采用镗模可以大大地提高工艺系统的刚度和抗振性。因此,可以用几把刀同时加工。所以生产效率很高。但镗模结构复杂、制造难度大、成本较高,且由于镗模的制造和装配误差、镗模在机床上的安装误差、镗杆和镗套的磨损等原因。用镗模加工孔系所能获得的加工精度也受到一定限制。
(2)用坐标法镗孔
在现代生产中,不仅要求产品的生产率高,而且要求能够实现大批量、多品种以及产品更新换代所需要的时间短等要求。镗模法由于镗模生产成本高,生产周期长,不大能适应这种要求,而坐标法镗孔却能适应这种要求。此外,在采用镗模法镗孔时,镗模板的加工也需要采用坐标法镗孔。
用坐标法镗孔,需要将油杯零件孔系尺寸及公差换算成直角坐标系中的尺寸及公差,然后选用能够在直角坐标系中作精密运动的机床进行镗孔。
2.3 油杯零件加工定位基准的选择
2.3.1 粗基准的选择
粗基准选择应当满足以下要求:
(1)保证各重要孔的加工余量均匀;
(2)保证装入油杯零件的零件与箱壁有一定的间隙。
为了满足上述要求,应选择的主要支承孔作为主要基准。即以油杯零件的输入轴和输出轴的支承孔作为粗基准。也就是以前后端面上距顶平面最近的孔作为主要基准以限制工件的四个自由度,再以另一个主要支承孔定位限制第五个自由度。由于是以孔作为粗基准加工精基准面。因此,以后再用精基准定位加工主要支承孔时,孔加工余量一定是均匀的。由于孔的位置与箱壁的位置是同一型芯铸出的。因此,孔的余量均匀也就间接保证了孔与箱壁的相对位置。
2.3.2 精基准的选择
从保证油杯零件孔与孔、孔与平面、平面与平面之间的位置 。精基准的选择应能保证油杯零件在整个加工过程中基本上都能用统一的基准定位。从油杯零件图分析可知,它的顶平面与各主要支承孔平行而且占有的面积较大,适于作精基准使用。但用一个平面定位仅仅能限制工件的三个自由度,如果使用典型的一面两孔定位方法,则可以满足整个加工过程中基本上都采用统一的基准定位的要求。至于前后端面,虽然它是油杯零件的装配基准,但因为它与油杯零件的主要支承孔系垂直。如果用来作精基准加工孔系,在定位、夹紧以及夹具结构设计方面都有一定的困难,所以不予采用。
2.4 油杯零件加工主要工序安排
对于大批量生产的零件,一般总是首先加工出统一的基准。油杯零件加工的第一个工序也就是加工统一的基准。具体安排是先以孔定位粗、精加工顶平面。第二个工序是加工定位用的两个工艺孔。由于顶平面加工完成后一直到油杯零件加工完成为止,除了个别工序外,都要用作定位基准。因此,顶面上的螺孔也应在加工两工艺孔的工序中同时加工出来。
后续工序安排应当遵循粗精分开和先面后孔的原则。先粗加工平面,再粗加工孔系。螺纹底孔在多轴组合钻床上钻出,因切削力较大,也应该在粗加工阶段完成。对于油杯零件,需要精加工的是支承孔前后端平面。按上述原则亦应先精加工平面再加工孔系,但在实际生产中这样安排不易于保证孔和端面相互垂直。因此,实际采用的工艺方案是先精加工孔系,然后以支承孔用可胀心轴定位来加工端面,这样容易保证零件图纸上规定的端面全跳动公差要求。各螺纹孔的攻丝,由于切削力较小,可以安排在粗、精加工阶段中分散进行。
加工工序完成以后,将工件清洗干净。清洗是在的含0.4%—1.1%苏打及0.25%—0.5%亚硝酸钠溶液中进行的。清洗后用压缩空气吹干净。保证零件内部杂质、铁屑、毛刺、砂粒等的残留量不大于。
根据以上分析过程,现将油杯零件加工工艺路线确定如下:
工艺路线一:
10 铸造 铸造毛坯
20 时效 时效处理
30 铣 铣底面
40 钻孔 钻4Xφ7孔
50 钻孔 钻4Xφ12孔深为3.5
60 车 车φ60端面
70 车 车φ45内孔
80 钻孔 钻顶部φ6孔
90 去毛刺 钳工去毛刺
100 终检 按图样要求检验
110 入库 入库
工艺路线二:
10 铸造 铸造毛坯
20 时效 时效处理
30 铣 铣底面
40 车 车φ60端面
50 车 车φ45内孔
60 钻孔 钻4Xφ7孔
70 钻孔 钻4Xφ12孔深为3.5
80 钻孔 钻顶部φ6孔
90 去毛刺 钳工去毛刺
100 终检 按图样要求检验
110 入库 入库
以上加工方案大致看来合理,但通过仔细考虑,零件的技术要求及可能采取的加工手段之后,就会发现仍有问题,
以上工艺过程详见机械加工工艺过程综合卡片。综合选择方案一:
工艺路线一:
110 铸造 铸造毛坯
20 时效 时效处理
30 铣 铣底面
40 钻孔 钻4Xφ7孔
50 钻孔 钻4Xφ12孔深为3.5
60 车 车φ60端面
70 车 车φ45内孔
80 钻孔 钻顶部φ6孔
90 去毛刺 钳工去毛刺
100 终检 按图样要求检验
110 入库 入库
2.5 机械加工余量、工序尺寸及毛坯尺寸的确定
“油杯零件”零件材料采用HT150制造。材料为HT150,硬度HB为170—241,生产类型为大批量生产,采用铸造毛坯。
(1)底面的加工余量。
根据工序要求,顶面加工分粗、精铣加工。各工步余量如下:
粗铣:参照《机械加工工艺手册第1卷》表3.2.23。其余量值规定为,现取。表3.2.27粗铣平面时厚度偏差取。
精铣:参照《机械加工工艺手册》表2.3.59,其余量值规定为。
(3)孔
毛坯为实心,不冲孔。
(4)端面加工余量。
根据工艺要求,前后端面分为粗铣、半精铣、半精铣、精铣加工。各工序余量如下:
粗铣:参照《机械加工工艺手册第1卷》表3.2.23,其加工余量规定为,现取。
半精铣:参照《机械加工工艺手册第1卷》,其加工余量值取为。
精铣:参照《机械加工工艺手册》,其加工余量取为。
2.6确定切削用量及基本工时(机动时间)
工序30:铣底面
机床:铣床X52K
刀具:硬质合金端铣刀(面铣刀) 齿数[10]
(1)粗铣油杯零件底面
铣削深度:
每齿进给量:根据《机械加工工艺手册》表2.4.73,取
铣削速度:参照《机械加工工艺手册》表2.4.81,取
机床主轴转速:,取
实际铣削速度:
进给量:
工作台每分进给量:
:根据《机械加工工艺手册》表2.4.81,
被切削层长度:由毛坯尺寸可知
刀具切入长度:
刀具切出长度:取
走刀次数为1
机动时间:
(2)精铣油杯零件底面
铣削深度:
每齿进给量:根据《机械加工工艺手册》表2.4.73,取
铣削速度:参照《机械加工工艺手册》表2.4.81,取
机床主轴转速:,取
实际铣削速度:
进给量:
工作台每分进给量:
被切削层长度:由毛坯尺寸可知
刀具切入长度:精铣时
刀具切出长度:取
走刀次数为1
机动时间:
本工序机动时间
工序40:钻4Xφ7孔
钻孔选用机床为Z525摇臂机床,刀具选用GB1436-85直柄短麻花钻,《机械加工工艺手册》第2卷。
根据《机械加工工艺手册》第2卷表10.4-2查得钻孔进给量为0.20~0.35。
则取
确定切削速度,根据《机械加工工艺手册》第2卷表10.4-9
切削速度计算公式为 (3-20)
查得参数为,刀具耐用度T=35
则 ==1.6
所以 ==72
选取
所以实际切削速度为=2.64
确定切削时间(一个孔) =
工序50:钻4Xφ12孔深为3.5
机床:立式钻床Z525
刀具:根据参照参考文献[3]表4.3~9选高速钢锥柄麻花钻头。
切削深度:
进给量:根据参考文献[3]表2.4~38,取。
切削速度:参照参考文献[3]表2.4~41,取。
机床主轴转速:
,
按照参考文献[3]表3.1~31,取
所以实际切削速度:
切削工时
被切削层长度:
刀具切入长度:
刀具切出长度: 取
走刀次数为1
机动时间:
工序60车φ60端面
所选刀具为YG6硬质合金可转位车刀。根据《切削用量简明手册》表1.1,由于CA6140机床的中心高为200(表1.30),故选刀杆尺寸=,刀片厚度为。选择车刀几何形状为卷屑槽带倒棱型前刀面,前角=,后角=,主偏角=,副偏角=,刃倾角=,刀尖圆弧半径=。
①.确定切削深度
由于单边余量为,可在一次走刀内完成,故
== (3-1)
②.确定进给量
根据《切削加工简明实用手册》可知:表1.4
刀杆尺寸为,,工件直径~400之间时,
进给量=0.5~1.0
按CA6140机床进给量(表4.2—9)在《机械制造工艺设计手册》可知:
=0.7
确定的进给量尚需满足机床进给机构强度的要求,故需进行校验根据表1—30,CA6140机床进给机构允许进给力=3530。
根据表1.21,当强度在174~207时,,,=时,径向进给力:=950。
切削时的修正系数为=1.0,=1.0,=1.17(表1.29—2),故实际进给力为:
=950=1111.5 (3-2)
由于切削时进给力小于机床进给机构允许的进给力,故所选=可用。
③.选择刀具磨钝标准及耐用度
根据《切削用量简明使用手册》表1.9,车刀后刀面最大磨损量取为,车刀寿命=。
④.确定切削速度
切削速度可根据公式计算,也可直接有表中查出。
根据《切削用量简明使用手册》表1.11,当硬质合金刀加工硬度200~219的铸件,,,切削速度=。
切削速度的修正系数为=1.0,=0.92,0.8,=1.0,=1.0(见表1.28),故:
==63 (3-3)
===120 (3-4)
根据CA6140车床说明书选择
=125
这时实际切削速度为:
== (3-5)
⑤.校验机床功率
切削时的功率可由表查出,也可按公式进行计算。
由《切削用量简明使用手册》表1.25,=~,,,切削速度时,
=
切削功率的修正系数=0.73,=0.9,故实际切削时间的功率为:
=1.7=1.2 (3-6)
根据表1.30,当=时,机床主轴允许功率为=,,故所选切削用量可在CA6140机床上进行,最后决定的切削用量为:
=3.75,=,==,=
工序70 车φ45内孔
所选刀具为YG6硬质合金可转位镗刀。根据《切削用量简明手册》表1.1,由于CA6140机床的中心高为200(表1.30),故选刀杆尺寸=,刀片厚度为。选择车刀几何形状为卷屑槽带倒棱型前刀面,前角=,后角=,主偏角=,副偏角=,刃倾角=,刀尖圆弧半径=。
①.确定切削深度
由于单边余量为,可在一次走刀内完成,故
==
②.确定进给量
根据《切削加工简明实用手册》可知:表1.4
刀杆尺寸为,,工件直径~400之间时,
进给量=0.5~1.0
按CA6140机床进给量(表4.2—9)在《机械制造工艺设计手册》可知:
=0.7
确定的进给量尚需满足机床进给机构强度的要求,故需进行校验根据表1—30,CA6140机床进给机构允许进给力=3530。
根据表1.21,当强度在174~207时,,,=时,径向进给力:=950。
切削时的修正系数为=1.0,=1.0,=1.17(表1.29—2),故实际进给力为:
=950=1111.5 由于切削时进给力小于机床进给机构允许的进给力,故所选=可用。
③.选择刀具磨钝标准及耐用度
根据《切削用量简明使用手册》表1.9,车刀后刀面最大磨损量取为,车刀寿命=。
④.确定切削速度
切削速度可根据公式计算,也可直接有表中查出。
根据《切削用量简明使用手册》表1.11,当硬质合金刀加工硬度200~219的铸件,,,切削速度=。
切削速度的修正系数为=1.0,=0.92,0.8,=1.0,=1.0(见表1.28),故:
==63 (3-12)
===120 (3-13)
根据CA6140车床说明书选择
=125
这时实际切削速度为:
== (3-14)
⑤.校验机床功率
切削时的功率可由表查出,也可按公式进行计算。
由《切削用量简明使用手册》表1.25,=~,,,切削速度时,
=
切削功率的修正系数=0.73,=0.9,故实际切削时间的功率为:
=1.7=1.2
根据表1.30,当=时,机床主轴允许功率为=,,故所选切削用量可在CA6140机床上进行,最后决定的切削用量为:
=1.25,=,==,=
工序80:钻顶部φ6孔
选择钻床:Z525钻床
1、刀具的选择:选择高速钢麻花钻,其直径。
依据,根据表2.1及表2.2,可选择钻头的几何形状为:标准,,,,,。
2、选择切削用量
1)依据,根据表2.7,可得钢的强度,钻头的直径时,。
因为,所以不需要乘孔深修正系数。
2)依据,根据表2.8,根据钻头强度决定进给量:当,,钻头强度允许的进给力。
3)依据,根据表2.9,按机床进给机构强度决定进给量:当,,机床进给机构允许的轴向力为8330N(查,表2.35)时,进给量为。
从以上三个进给量比较可以看出,受限制的进给量是工艺要求,其值为。根据Z525钻床说明书,选择。
查,根据表2.19,当,时,查得轴向力。
轴向力的修正系数为:
故。
查ZK546钻床的使用说明书,机床进给机构所允许的最大轴向力为,由于,所以可用。
(2)决定钻头磨钝标准及寿命
查,根据表2.12,当时,可取得钻头的后刀面最大磨损量取为0.4mm(0.4~0.6),刀具的寿命T=15min。
(3)决定切削速度
查,根据表2.30,可查得,,,,,。则。
=
查,根据表2.31,可查得,,,,故:
r/min
查,根据ZK546钻头的使用说明书,可以考虑选择,但因为所选转数计算转数较高,会使刀具寿命下降,所以可将进给量降一级,即取,也可以选择较低一级的转数 ,仍用,比较这两种选择方案:
1)第一方案 ,
2)第二方案 ,
因为第一方案的乘积较大,基本工时较少,故第一方案好。这时, 。
(4)检验机床扭矩及功率
查,根据表2.20,当,时,。扭矩的修正系数为可查得,所以。根据Z525钻床的使用说明书,当时,。
由于,故选择之切削用量可用,即
f=0.17mm/r, , 。
第3章 铣底面夹具设计设计
3.1 研究原始质料
利用本夹具主要用来加工铣底面夹具设计,加工时除了要满足粗糙度要求外,还应满足两孔轴线间公差要求。为了保证技术要求,最关键是找到定位基准。同时,应考虑如何提高劳动生产率和降低劳动强度。
一、机床夹具定位元件
工件定位方式不同,夹具定位元件的结构形式也不同,这里只介绍几种常用的基本定位元件。实际生产中使用的定位元件都是这些基本定位元件的组合。
(一)工件以平面定位常用定位元件
1.支承钉
常用支承钉的结构形式如图6-1所示。平头支承钉(图a)用于支承精基准面;球头支承钉(图b)用于支承粗基准面;网纹顶面支承钉(图c)能产生较大的摩擦力,但网槽中的切屑不易清除,常用在工件以粗基准定位且要求产生较大摩擦力的侧面定位场合。一个支承钉相当于一个支承点,限制一个自由度;在一个平面内,两个支承钉限制二个自由度;不在同一直线上的三个支承钉限制三个自由度。
图6-1 常用支承钉的结构形式
2.支承板
常用的支承板结构形式如图6-2所示。平面型支承板(图a)结构简单,但沉头螺钉处清理切屑比较困难,适于作侧面和顶面定位;带斜槽型支承板(图b),在带有螺钉孔的斜槽中允许容纳少许切屑,适于作底面定位。当工件定位平面较大时,常用几块支承板组合成一个平面。一个支承板相当于两个支承点,限制两个自由度;两个(或多个)支承板组合,相当于一个平面,可以限制三个自由度。
图6-2 常用支承板的结构形式
3.可调支承
常用可调支承结构形式如图6-3所示。可调支承多用于支承工件的粗基准面,支承高度可以根据需要进行调整,调整到位后用螺母锁紧。一个可调支承限制一个自由度。
图6-3 常用可调支承的结构形式
(二) 工件以孔定位常用定位元件
1.定位销
图6-6是几种常用固定式定位销的结构形式。当工件的孔径尺寸较小时,可选用图 a 所示的结构;当孔径尺寸较大时,选用图 b 所示的结构;当工件同时以圆孔和端面组合定位时,则应选用图c所示的带有支承端面的结构。用定位销定位时,短圆柱销限制二个自由度;长圆柱销可以限制四个自由度;短圆锥销(图d)限制三个自由度。
图6-6 固定式定位销的结构形式
3.2 定位、夹紧方案的选择
由零件图可知:在对加工前,平面进行了粗、精铣加工,底面进行了钻、扩加工。因此,定位、夹紧方案有:
为了使定位误差达到要求的范围之内,采用一面一销再加上一手动调节的螺丝定位的定位方式,这种定位在结构上简单易操作。一面即底平面。
3.3 切削力及夹紧力的计算
刀具:铣刀(硬质合金)
刀具有关几何参数:
由参考文献[5]5表1~2~9 可得铣削切削力的计算公式:
有:
根据工件受力切削力、夹紧力的作用情况,找出在加工过程中对夹紧最不利的瞬间状态,按静力平衡原理计算出理论夹紧力。最后为保证夹紧可靠,再乘以安全系数作为实际所需夹紧力的数值,即:
安全系数K可按下式计算:
式中:为各种因素的安全系数,查参考文献[5]1~2~1可知其公式参数:
由此可得:
所以 根据工件受力切削力、夹紧力的作用情况,找出在加工过程中对夹紧最不利的瞬间状态,按静力平衡原理计算出理论夹紧力。最后为保证夹紧可靠,再乘以安全系数作为实际所需夹紧力的数值。即:
安全系数K可按下式计算有::
式中:为各种因素的安全系数,查参考文献[5]表可得:
所以有:
该孔的设计基准为中心轴,故以回转面做定位基准,实现“基准重合”原则; 参考文献,因夹具的夹紧力与切削力方向相反,实际所需夹紧力F夹与切削力F之间的关系F夹=KF
轴向力:F夹=KF (N)
扭距:
Nm
3.4 误差分析与计算
该夹具以一底面一侧面,两支撑钉和一个调节螺丝定位,为了满足工序的加工要求,必须使工序中误差总和等于或小于该工序所规定的尺寸公差。
与机床夹具有关的加工误差,一般可用下式表示:
由参考文献[5]可得:
⑴销的定位误差 :
其中:
,
,
,
⑵ 夹紧误差 :
其中接触变形位移值:
查[5]表1~2~15有。
⑶ 磨损造成的加工误差:通常不超过
⑷ 夹具相对刀具位置误差:取
误差总和:
3. 5 定向键与对刀装置设计
定向键安装在夹具底面的纵向槽中,一般使用两个。其距离尽可能布置的远些。通过定向键与铣床工作台T形槽的配合,使夹具上定位元件的工作表面对于工作台的送进方向具有正确的位置。定向键可承受铣削时产生的扭转力矩,可减轻夹紧夹具的螺栓的负荷,加强夹具在加工中的稳固性。
根据GB2207—80定向键结构如图所示:
图5.1 夹具体槽形与螺钉
根据T形槽的宽度 a=18mm 定向键的结构尺寸如表5.4:
表5.4 定向键
B
L
H
h
D
夹具体槽形尺寸
公称尺寸
允差d
允差
公称尺寸
允差D
18
~0.012
~0.035
25
12
4
12
4.5
18
+0.019
5
对刀装置由对刀块和塞尺组成,用来确定刀具与夹具的相对位置。
塞尺选用平塞尺,其结构如图5.3所示:
图5.3 平塞尺
塞尺尺寸参数如表5.5:
表5.5 塞尺
公称尺寸H
允差d
C
3
~0.006
0.25
上的分析可见,所设计的夹具能满足零件的加工精度要求。
3.6 确定夹具体结构和总体结构
对夹具体的设计的基本要求
(1)应该保持精度和稳定性
在夹具体表面重要的面,如安装接触位置,安装表面的刀块夹紧安装特定的,足够的精度,之间的位置精度稳定夹具体,夹具体应该采用铸造,时效处理,退火等处理方式。
(2)应具有足够的强度和刚度
保证在加工过程中不因夹紧力,切削力等外力变形和振动是不允许的,夹具应有足够的厚度,刚度可以适当加固。
(3)结构的方法和使用应该不错
夹较大的工件的外观,更复杂的结构,之间的相互位置精度与每个表面的要求高,所以应特别注意结构的过程中,应处理的工件,夹具,维修方便。再满足功能性要求(刚度和强度)前提下,应能减小体积减轻重量,结构应该简单。
(4)应便于铁屑去除
在加工过程中,该铁屑将继续在夹在积累,如果不及时清除,切削热的积累会破坏夹具定位精度,铁屑投掷可能绕组定位元件,也会破坏的定位精度,甚至发生事故。因此,在这个过程中的铁屑不多,可适当增加定位装置和夹紧表面之间的距离增加的铁屑空间:对切削过程中产生更多的,一般应在夹具体上面。
(5)安装应牢固、可靠
夹具安装在所有通过夹安装表面和相应的表面接触或实现的。当夹安装在重力的中心,夹具应尽可能低,支撑面积应足够大,以安装精度要高,以确保稳定和可靠的安装。夹具底部通常是中空的,识别特定的文件夹结构,然后绘制夹具布局。图中所示的夹具装配。
加工过程中,夹具必承受大的夹紧力切削力,产生冲击和振动,夹具的形状,取决于夹具布局和夹具和连接,在因此夹具必须有足够的强度和刚度。在加工过程中的切屑形成的有一部分会落在夹具,积累太多会影响工件的定位与夹紧可靠,所以夹具设计,必须考虑结构应便于铁屑。此外,夹点技术,经济的具体结构和操作、安装方便等特点,在设计中还应考虑。在加工过程中的切屑形成的有一部分会落在夹具,切割积累太多会影响工件的定位与夹紧可靠,所以夹具设计,必须考虑结构应便排出铁屑。
3.7夹具设计及操作的简要说明
为提高生产率,经过方案的认真分析和比较,选用了手动夹紧方式(螺旋机构)。这类夹紧机构结构简单、夹紧可靠、通用性大,在机床夹具中很广泛的应用。
此外,当夹具有制造误差,工作过程出现磨损,以及零件尺寸变化时,影响定位、夹紧的可靠。为防止此现象,选用可换定位销。以便随时根据情况进行调整换取。
第4章 钻孔夹具设计
4.1 研究原始质料
利用本夹具主要用来加工钻顶部φ6孔,加工时除了要满足粗糙度要求外,还应满足两孔轴线间公差要求。为了保证技术要求,最关键是找到定位基准。同时,应考虑如何提高劳动生产率和降低劳动强度。
4.2 定位、夹紧方案的选择
由零件图可知:在对钻顶部φ6孔加工前,底平面进行了粗、精铣加工因此,定位、夹紧方案有:
在加工中用作确定工件在夹具中占有正确位置的基准,称为定位基准。据《夹具手册》知定位基准应尽可能与工序基准重合,在同一工件的各道工序中,应尽量采用同一定位基准进行加工。因此以这些装配基准平面作为定位基准,避免了基准不重合误差,有利于提高滑鞍各主要表面的相互位置精度。有零件图可知,根据本道工序,选底面和侧面为定位基准。
4.3切削力及夹紧力的计算
刀具的几何参数:
由参考文献[5]查表可得:
圆周切削分力公式:
式中
查[5]表得: 查[5]表 取
由表可得参数:
即:
同理:径向切削分力公式 :
式中参数:
即:
轴向切削分力公式 :
式中参数:
即:
根据工件受力切削力、夹紧力的作用情况,找出在加工过程中对夹紧最不利的瞬间状态,按静力平衡原理计算出理论夹紧力。最后为保证夹紧可靠,再乘以安全系数作为实际所需夹紧力的数值。即:
安全系数K可按下式计算有::
式中:为各种因素的安全系数,查参考文献[5]表可得:
所以有:
螺旋夹紧时产生的夹紧力按以下公式计算有:
式中参数由参考文献[5]可查得:
其中:
螺旋夹紧力:
该夹具采用螺旋夹紧机构,用螺栓通过弧形压块压紧工件,受力简图如下:
图5.1 移动压板受力简图
由表得:原动力计算公式
即:
由上述计算易得:
由计算可知所需实际夹紧力不是很大,为了使其
展开阅读全文