收藏 分销(赏)

北师大版相似三角形测试题.doc

上传人:快乐****生活 文档编号:1985928 上传时间:2024-05-13 格式:DOC 页数:4 大小:371.42KB
下载 相关 举报
北师大版相似三角形测试题.doc_第1页
第1页 / 共4页
北师大版相似三角形测试题.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
第四章检测题 一、选择题(每小题3分,共30分) 1.如果mn=ab,那么下列比例式中错误的是( ) A.= B.= C.= D.= 2.(贺州中考)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为( ) A.1∶1 B.1∶2 C.1∶3 D.1∶4 3.如图,在△ABC中,∠ACB=90°,CD⊥AB,DE⊥BC,那么与△ABC相似的三角形的个数有( ) A.1个 B.2个 C.3个 D.4个    ,第3题图)    ,第6题图) 4.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( ) A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm 5.某人要在报纸上刊登广告,一块10cm×5cm的矩形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他应付广告费( ) A.540元 B.1080元 C.1620元 D.1800元 6.(永州中考)如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( ) A.1 B.2 C.3 D.4 7.(眉山中考)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( ) A.1.25尺 B.57.5尺 C.6.25尺 D.56.5尺 8.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MD的长是( ) A. B. C.1 D. 9.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是( ) A.-a B.-(a+1) C.-(a-1) D.-(a+3) 10.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF=DP;④DP·DE=DH·DC,其中一定正确的是( ) A.①② B.②③ C.①④ D.③④ 二、填空题(每小题3分,共18分) 11.若x∶y=1∶2,则=__ _______. 12.若△ABC∽△A′B′C′,且AB∶A′B′=3∶4,△ABC的周长为12 cm,则△A′B′C′的周长为__________. 13.(锦州中考)如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,连接DE交BC于点F,则CF∶AD=_________. ,第13题图)  ,第14题图)  ,第15题图)  ,第16题图) 14.(阿坝州中考)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=__ _______. 15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=50 cm,EF=25 cm,测得边DF离地面的高度AC=1.6 m,CD=10 m,则树高AB=__ ______m. 16.如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论: ①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2=S32.其中结论正确的序号是____________. 三、解答题(共72分) 17.(6分)如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长. 18.(6分如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(-1,2)、B(2,1)、C(4,5). (1)画出△ABC关于x轴对称的△A1B1C1; (2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积. 19.(6分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图所示,已知标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD的水平距离DF=2 m,则旗杆AB的高度. 20.(7分)如图,DC∥AB,AD=BC,E是DC延长线上的点,连接AE,交BC于点F. (1)求证:△ABF∽△ECF; (2)如果AD=5 cm,AB=8 cm,CF=2 cm,求CE的长. 21.(8分)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F. (1)求证:四边形ABCD是正方形; (2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论. 22.(8分)(泰安中考)如图,在四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD. (1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长. 23.(9分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米) 24.如图,AB⊥BC,射线CM⊥BC,且BC=5,AB=1,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD. (1)如图1,若BP=4,求△ABP的周长. (2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由. (3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=  .(请直接写出答案)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服