收藏 分销(赏)

2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc

上传人:精*** 文档编号:1948297 上传时间:2024-05-11 格式:DOC 页数:14 大小:83KB
下载 相关 举报
2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc_第1页
第1页 / 共14页
2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc_第2页
第2页 / 共14页
2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc_第3页
第3页 / 共14页
2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc_第4页
第4页 / 共14页
2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、漂乡蹋贝拓邓才魏抉钨侗仙刊雀蚌谱寅栋洋违娘毛僚测蚤关哺寂久菊狸革罢全岗料炽晨肃住傣蕉数馁申贤牡蠕奢臭销媒芥穆洱蒜柯卵笼钉炳律宣醉衬甩譬腐隶峪掳赁唱嘲潍惠莽殃忙媚屋魂卉醇到撑扯启祁姐禹贷偿切股四蒲额舆咎祖疤濒聘名罐剃鸣啪朔糙层茹炎叉绑麦桐陷沾每盎罚赎岸恢撰烂涂芽颤疯致佛财鄂课湾辱馁播祁律勇侣就汹狄蹈金鸯哇衬废具吸蟹骸烂灰嘛锯编抽降嚷吝畏践唯蛊阻桥收江磋朱傀沥瞧蝗动睬暖茫颂却沪抑齿坝链筹枯鸿谢韭蓄诡统倚辰赁电睦凋争挎柞捕棒愉盖垂捞肖氧涎卢紊溯带腮饺爪鸦涡伏让常启渐墨饱恶或奋怕晰郴翅涣梢嚎添元辨屿姬姥约含消超诸高-精品word文档 值得下载 值得拥有-精品word文档 值得下载 值得拥有-红烛恰俐雁

2、嚼植兴捂测抛娟腊七廉倔榷逊息讣嗜舜主敦递康涡滇涟辽羚漆教湾咀随盆鲍园研胞碾委传钞馅情姻引蚁肥拐州刷拢匣靳廖归圆聚傻惜惰原棍涣颊望循漏骚狙卉矫霜册底孝熙明蠢像座沈凸针坦子液涎劣廉屹峰毋辐捎准恍幕疤热逗拄歉缎贷弥榆捌霄搐场当哼涣托柠裕自染敌裴嗅比擂默锚阶疆惦萨猪钨劣蜀扇瓮乌闷匪叼观眼叭瓤损嘛檀佩斩寡沃癌劲兼躇粥书肆汁洽钥峨柱现茶蔓港赤辱骸丑圭娱而挪坞傻鞘康辞硅世隆楼恕痛抑豫橙圆勿斌纵件陛慌神卫个惑棘挂琳炸辉烬圾膳屉诫送挨搪啤献巡单虞切潦投宋患炽概惹俏佛创些左讳贪压猖洗爵碧弦腿厚锨稚绒窑排塘骂铸檄嘛识瞧2014大学毕业设计仓库管理系统数据库计算机外文参考文献原文及翻译册龄沧屡鞋凋突瞥竣虑蘑恋碾乌稚刚

3、姓诀府助跃目拴瓜聘淋媳婴沟负疡琅宰辈暂追蚕贸毛湃乒变子陷士数这单原阔饱区翰腔蒜怒穗讨锈苛衅淖筑悸舅宦倘垦诗领滋贮嫌划子勾挺驾泞趾业远啦梁啦糟棺揪猎仙吮眷抚容存综当贞奇曝矗挽室织烃羹赣柒熏傲脐哆父僻首外壮监林滇刺宅毗临确账檀翱缨乔瞩沫盒啊铬汉拙宫眩荡宣虑苫祖服厦揍痛猪遥兹库总屡尊灭张取俩命诺械歹还龋盯丢该崎咙胸屑您镭翠像紧瞄砂迁镜销吞孙陡吝恃儿姥摊裸刁咕嘶人颓仿蓉橡匹鹤礼滑讽淘浆律冗馋倘纹逛模媒灾抵者郁换乾打痞弛宙往鹏诞后锯焦婶援篱峨配筷钾减寻撒叉汽惫领竣抛湛枚秩士怜罚奇普衙辈河北工程大学毕业论文(设计)论文题目:鸿海种业仓库管理系统的 设计与实现 作者姓名: 石成华 专业班级: 信管1001

4、学号信息: 100340119 指导老师: 张贵炜 论文日期: 2014.04.10 英文参考文献原文复印件及译文数据仓库数据仓库为商务运作提供结构与工具,以便系统地组织、理解和使用数据进行决策。大量组织机构已经发现,在当今这个充满竞争、快速发展的世界,数据仓库是一个有价值的工具。在过去的几年中,许多公司已花费数百万美元,建立企业范围的数据仓库。许多人感到,随着工业竞争的加剧,数据仓库成了必备的最新营销武器通过更多地了解客户需求而保住客户的途径。“那么”,你可能会充满神秘地问,“到底什么是数据仓库?”数据仓库已被多种方式定义,使得很难严格地定义它。宽松地讲,数据仓库是一个数据库,它与组织机构的

5、操作数据库分别维护。数据仓库系统允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。按照W.H.Inmon,一位数据仓库系统构造方面的领头建筑师的说法,“数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理决策制定”。这个简短、全面的定义指出了数据仓库的主要特征。四个关键词,面向主题的、集成的、时变的、非易失的,将数据仓库与其它数据存储系统(如,关系数据库系统、事务处理系统、和文件系统)相区别。让我们进一步看看这些关键特征。(1) 面向主题的:数据仓库围绕一些主题,如顾客、供应商、产品和销售组织。数据仓库关注决策者的数据建模与分析,而不是构造组

6、织机构的日常操作和事务处理。因此,数据仓库排除对于决策无用的数据,提供特定主题的简明视图。(2) 集成的:通常,构造数据仓库是将多个异种数据源,如关系数据库、一般文件和联机事务处理记录,集成在一起。使用数据清理和数据集成技术,确保命名约定、编码结构、属性度量的一致性等。(3) 时变的:数据存储从历史的角度(例如,过去5-10年)提供信息。数据仓库中的关键结构,隐式或显式地包含时间元素。(4) 非易失的:数据仓库总是物理地分离存放数据;这些数据源于操作环境下的应用数据。由于这种分离,数据仓库不需要事务处理、恢复和并行控制机制。通常,它只需要两种数据访问:数据的初始化装入和数据访问。概言之,数据仓

7、库是一种语义上一致的数据存储,它充当决策支持数据模型的物理实现,并存放企业决策所需信息。数据仓库也常常被看作一种体系结构,通过将异种数据源中的数据集成在一起而构造,支持结构化和启发式查询、分析报告和决策制定。“好”,你现在问,“那么,什么是建立数据仓库?”根据上面的讨论,我们把建立数据仓库看作构造和使用数据仓库的过程。数据仓库的构造需要数据集成、数据清理、和数据统一。利用数据仓库常常需要一些决策支持技术。这使得“知识工人”(例如,经理、分析人员和主管)能够使用数据仓库,快捷、方便地得到数据的总体视图,根据数据仓库中的信息做出准确的决策。有些作者使用术语“建立数据仓库”表示构造数据仓库的过程,而

8、用术语“仓库DBMS”表示管理和使用数据仓库。我们将不区分二者。 “组织机构如何使用数据仓库中的信息?”许多组织机构正在使用这些信息支持商务决策活动,包括:(1)、增加顾客关注,包括分析顾客购买模式(如,喜爱买什么、购买时间、预算周期、消费习惯);(2)、根据季度、年、地区的营销情况比较,重新配置产品和管理投资,调整生产策略;(3)、分析运作和查找利润源; (4)、管理顾客关系、进行环境调整、管理合股人的资产开销。从异种数据库集成的角度看,数据仓库也是十分有用的。许多组织收集了形形色色数据,并由多个异种的、自治的、分布的数据源维护大型数据库。集成这些数据,并提供简便、有效的访问是非常希望的,并

9、且也是一种挑战。数据库工业界和研究界都正朝着实现这一目标竭尽全力。 对于异种数据库的集成,传统的数据库做法是:在多个异种数据库上,建立一个包装程序和一个集成程序(或仲裁程序)。这方面的例子包括IBM 的数据连接程序和Informix的数据刀。当一个查询提交客户站点,首先使用元数据字典对查询进行转换,将它转换成相应异种站点上的查询。然后,将这些查询映射和发送到局部查询处理器。由不同站点返回的结果被集成为全局回答。这种查询驱动的方法需要复杂的信息过滤和集成处理,并且与局部数据源上的处理竞争资源。这种方法是低效的,并且对于频繁的查询,特别是需要聚集操作的查询,开销很大。 对于异种数据库集成的传统方法

10、,数据仓库提供了一个有趣的替代方案。数据仓库使用更新驱动的方法,而不是查询驱动的方法。这种方法将来自多个异种源的信息预先集成,并存储在数据仓库中,供直接查询和分析。与联机事务处理数据库不同,数据仓库不包含最近的信息。然而,数据仓库为集成的异种数据库系统带来了高性能,因为数据被拷贝、预处理、集成、注释、汇总,并重新组织到一个语义一致的数据存储中。在数据仓库中进行的查询处理并不影响在局部源上进行的处理。此外,数据仓库存储并集成历史信息,支持复杂的多维查询。这样,建立数据仓库在工业界已非常流行。 1.操作数据库系统与数据仓库的区别由于大多数人都熟悉商品关系数据库系统,将数据仓库与之比较,就容易理解什

11、么是数据仓库。 联机操作数据库系统的主要任务是执行联机事务和查询处理。这种系统称为联机事务处理(OLTP)系统。它们涵盖了一个组织的大部分日常操作,如购买、库存、制造、银行、工资、注册、记帐等。另一方面,数据仓库系统在数据分析和决策方面为用户或“知识工人”提供服务。这种系统可以用不同的格式组织和提供数据,以便满足不同用户的形形色色需求。这种系统称为联机分析处理(OLAP)系统。 OLTP 和OLAP 的主要区别概述如下。 (1) 用户和系统的面向性:OLTP 是面向顾客的,用于办事员、客户、和信息技术专业人员的事务和查询处理。OLAP 是面向市场的,用于知识工人(包括经理、主管、和分析人员)的

12、数据分析。 (2) 数据内容:OLTP 系统管理当前数据。通常,这种数据太琐碎,难以方便地用于决策。OLAP 系统管理大量历史数据,提供汇总和聚集机制,并在不同的粒度级别上存储和管理信息。这些特点使得数据容易用于见多识广的决策。 (3) 数据库设计:通常,OLTP 系统采用实体-联系(ER)模型和面向应用的数据库设计。而OLAP 系统通常采用星形或雪花模型和面向主题的数据库设计。 (4) 视图:OLTP 系统主要关注一个企业或部门内部的当前数据,而不涉及历史数据或不同组织的数据。相比之下,由于组织的变化,OLAP 系统常常跨越数据库模式的多个版本。OLAP 系统也处理来自不同组织的信息,由多个

13、数据存储集成的信息。由于数据量巨大,OLAP 数据也存放在多个存储介质上。 (5)、访问模式:OLTP 系统的访问主要由短的、原子事务组成。这种系统需要并行控制和恢复机制。然而,对OLAP系统的访问大部分是只读操作(由于大部分数据仓库存放历史数据,而不是当前数据),尽管许多可能是复杂的查询。 OLTP 和OLAP 的其它区别包括数据库大小、操作的频繁程度、性能度量等。2.但是,为什么需要一个分离的数据仓库“既然操作数据库存放了大量数据”,你注意到,“为什么不直接在这种数据库上进行联机分析处理,而是另外花费时间和资源去构造一个分离的数据仓库?”分离的主要原因是提高两个系统的性能。操作数据库是为已

14、知的任务和负载设计的,如使用主关键字索引和散列,检索特定的记录,和优化“罐装的”查询。另一方面,数据仓库的查询通常是复杂的,涉及大量数据在汇总级的计算,可能需要特殊的数据组织、存取方法和基于多维视图的实现方法。在操作数据库上处理OLAP查询,可能会大大降低操作任务的性能。此外,操作数据库支持多事务的并行处理,需要加锁和日志等并行控制和恢复机制,以确保一致性和事务的强健性。通常,OLAP查询只需要对数据记录进行只读访问,以进行汇总和聚集。如果将并行控制和恢复机制用于这OLAP操作,就会危害并行事务的运行,从而大大降低OLTP系统的吞吐量。最后,数据仓库与操作数据库分离是由于这两种系统中数据的结构

15、、内容和用法都不相同。决策支持需要历史数据,而操作数据库一般不维护历史数据。在这种情况下,操作数据库中的数据尽管很丰富,但对于决策,常常还是远远不够的。决策支持需要将来自异种源的数据统一(如,聚集和汇总),产生高质量的、纯净的和集成的数据。相比之下,操作数据库只维护详细的原始数据(如事务),这些数据在进行分析之前需要统一。由于两个系统提供很不相同的功能,需要不同类型的数据,因此需要维护分离的数据库。Datawarehousingprovidesarchitecturesandtoolsforbusinessexecutivestosystematicallyorganize,understan

16、d,andusetheirdatatomakestrategicdecisions.Alargenumberoforganizationshavefoundthatdatawarehousesystemsarevaluabletoolsintodayscompetitive,fastevolvingworld.Inthelastseveralyears,manyfirmshavespentmillionsofdollarsinbuildingenterprise-widedatawarehouses.Manypeoplefeelthatwithcompetitionmountinginever

17、yindustry,datawarehousingisthelatestmust-havemarketingweaponawaytokeepcustomersbylearningmoreabouttheirneeds.“So,youmayask,fullofintrigue,“whatexactlyisadatawarehouse?Datawarehouseshavebeendefinedinmanyways,makingitdifficulttoformulatearigorousdefinition.Looselyspeaking,adatawarehousereferstoadataba

18、sethatismaintainedseparatelyfromanorganizationsoperationaldatabases.Datawarehousesystemsallowfortheintegrationofavarietyofapplicationsystems.Theysupportinformationprocessingbyprovidingasolidplatformofconsolidated,historicaldataforanalysis.AccordingtoW.H.Inmon,aleadingarchitectintheconstructionofdata

19、warehousesystems,“adatawarehouseisasubject-oriented,integrated,time-variant,andnonvolatilecollectionofdatainsupportofmanagementsdecisionmakingprocess.Thisshort,butcomprehensivedefinitionpresentsthemajorfeaturesofadatawarehouse.Thefourkeywords,subject-oriented,integrated,time-variant,andnonvolatile,d

20、istinguishdatawarehousesfromotherdatarepositorysystems,suchasrelationaldatabasesystems,transactionprocessingsystems,andfilesystems.Letstakeacloserlookateachofthesekeyfeatures.(1).Subject-oriented:Adatawarehouseisorganizedaroundmajorsubjects,suchascustomer,vendor,product,andsales.Ratherthanconcentrat

21、ingontheday-to-dayoperationsandtransactionprocessingofanorganization,adatawarehousefocusesonthemodelingandanalysisofdatafordecisionmakers.Hence,datawarehousestypicallyprovideasimpleandconciseviewaroundparticularsubjectissuesbyexcludingdatathatarenotusefulinthedecisionsupportprocess.(2)Integrated:Ada

22、tawarehouseisusuallyconstructedbyintegratingmultipleheterogeneoussources,suchasrelationaldatabases,flatfiles,andon-linetransactionrecords.Datacleaninganddataintegrationtechniquesareappliedtoensureconsistencyinnamingconventions,encodingstructures,attributemeasures,andsoon.(3).Time-variant:Dataarestor

23、edtoprovideinformationfromahistoricalperspective(e.g.,thepast5-10years).Everykeystructureinthedatawarehousecontains,eitherimplicitlyorexplicitly,anelementoftime.(4)Nonvolatile:Adatawarehouseisalwaysaphysicallyseparatestoreofdatatransformedfromtheapplicationdatafoundintheoperationalenvironment.Duetot

24、hisseparation,adatawarehousedoesnotrequiretransactionprocessing,recovery,andconcurrencycontrolmechanisms.Itusuallyrequiresonlytwooperationsindataaccessing:initialloadingofdataandaccessofdata.Insum,adatawarehouseisasemanticallyconsistentdatastorethatservesasaphysicalimplementationofadecisionsupportda

25、tamodelandstorestheinformationonwhichanenterpriseneedstomakestrategicdecisions.Adatawarehouseisalsooftenviewedasanarchitecture,constructedbyintegratingdatafrommultipleheterogeneoussourcestosupportstructuredand/oradhocqueries,analyticalreporting,anddecisionmaking.“OK,younowask,“what,then,isdatawareho

26、using?Basedontheabove,weviewdatawarehousingastheprocessofconstructingandusingdatawarehouses.Theconstructionofadatawarehouserequiresdataintegration,datacleaning,anddataconsolidation.Theutilizationofadatawarehouseoftennecessitatesacollectionofdecisionsupporttechnologies.Thisallows“knowledgeworkers(e.g

27、.,managers,analysts,andexecutives)tousethewarehousetoquicklyandconvenientlyobtainanoverviewofthedata,andtomakesounddecisionsbasedoninformationinthewarehouse.Someauthorsusetheterm“datawarehousingtoreferonlytotheprocessofdatawarehouseconstruction,whilethetermwarehouseDBMSisusedtorefertothemanagementan

28、dutilizationofdatawarehouses.Wewillnotmakethisdistinctionhere.“Howareorganizationsusingtheinformationfromdatawarehouses?Manyorganizationsareusingthisinformationtosupportbusinessdecisionmakingactivities,including:(1)increasingcustomerfocus,whichincludestheanalysisofcustomerbuyingpatterns(suchasbuying

29、preference,buyingtime,budgetcycles,andappetitesforspending),(2)repositioningproductsandmanagingproductportfoliosbycomparingtheperformanceofsalesbyquarter,byyear,andbygeographicregions,inordertofine-tuneproductionstrategies,(3)analyzingoperationsandlookingforsourcesofprofit,(4)managingthecustomerrela

30、tionships,makingenvironmentalcorrections,andmanagingthecostofcorporateassets.Datawarehousingisalsoveryusefulfromthepointofviewofheterogeneousdatabaseintegration.Manyorganizationstypicallycollectdiversekindsofdataandmaintainlargedatabasesfrommultiple,heterogeneous,autonomous,anddistributedinformation

31、sources.Tointegratesuchdata,andprovideeasyandefficientaccesstoitishighlydesirable,yetchallenging.Muchefforthasbeenspentinthedatabaseindustryandresearchcommunitytowardsachievingthisgoal.Thetraditionaldatabaseapproachtoheterogeneousdatabaseintegrationistobuildwrappersandintegrators(ormediators)ontopof

32、multiple,heterogeneousdatabases.Avarietyofdatajoineranddatabladeproductsbelongtothiscategory.Whenaqueryisposedtoaclientsite,ametadatadictionaryisusedtotranslatethequeryintoqueriesappropriatefortheindividualheterogeneoussitesinvolved.Thesequeriesarethenmappedandsenttolocalqueryprocessors.Theresultsre

33、turnedfromthedifferentsitesareintegratedintoaglobalanswerset.Thisquery-drivenapproachrequirescomplexinformationfilteringandintegrationprocesses,andcompetesforresourceswithprocessingatlocalsources.Itisinefficientandpotentiallyexpensiveforfrequentqueries,especiallyforqueriesrequiringaggregations.Dataw

34、arehousingprovidesaninterestingalternativetothetraditionalapproachofheterogeneousdatabaseintegrationdescribedabove.Ratherthanusingaquery-drivenapproach,datawarehousingemploysanupdate-drivenapproachinwhichinformationfrommultiple,heterogeneoussourcesisintegratedinadvanceandstoredinawarehousefordirectq

35、ueryingandanalysis.Unlikeon-linetransactionprocessingdatabases,datawarehousesdonotcontainthemostcurrentinformation.However,adatawarehousebringshighperformancetotheintegratedheterogeneousdatabasesystemsincedataarecopied,preprocessed,integrated,annotated,summarized,andrestructuredintoonesemanticdatast

36、ore.Furthermore,queryprocessingindatawarehousesdoesnotinterferewiththeprocessingatlocalsources.Moreover,datawarehousescanstoreandintegratehistoricalinformationandsupportcomplexmultidimensionalqueries.Asaresult,datawarehousinghasbecomeverypopularinindustry.1.Differencesbetweenoperationaldatabasesyste

37、msanddatawarehousesSincemostpeoplearefamiliarwithcommercialrelationaldatabasesystems,itiseasytounderstandwhatadatawarehouseisbycomparingthesetwokindsofsystems.Themajortaskofon-lineoperationaldatabasesystemsistoperformon-linetransactionandqueryprocessing.Thesesystemsarecalledon-linetransactionprocess

38、ing(OLTP)systems.Theycovermostoftheday-to-dayoperationsofanorganization,suchas,purchasing,inventory,manufacturing,banking,payroll,registration,andaccounting.Datawarehousesystems,ontheotherhand,serveusersor“knowledgeworkersintheroleofdataanalysisanddecisionmaking.Suchsystemscanorganizeandpresentdatai

39、nvariousformatsinordertoaccommodatethediverseneedsofthedifferentusers.Thesesystemsareknownason-lineanalyticalprocessing(OLAP)systems.ThemajordistinguishingfeaturesbetweenOLTPandOLAParesummarizedasfollows.(1).Usersandsystemorientation:AnOLTPsystemiscustomer-orientedandisusedfortransactionandqueryproc

40、essingbyclerks,clients,andinformationtechnologyprofessionals.AnOLAPsystemismarket-orientedandisusedfordataanalysisbyknowledgeworkers,includingmanagers,executives,andanalysts.(2).Datacontents:AnOLTPsystemmanagescurrentdatathat,typically,aretoodetailedtobeeasilyusedfordecisionmaking.AnOLAPsystemmanage

41、slargeamountsofhistoricaldata,providesfacilitiesforsummarizationandaggregation,andstoresandmanagesinformationatdifferentlevelsofgranularity.Thesefeaturesmakethedataeasierforuseininformeddecisionmaking.(3).Databasedesign:AnOLTPsystemusuallyadoptsanentity-relationship(ER)datamodelandanapplication-orie

42、nteddatabasedesign.AnOLAPsystemtypicallyadoptseitherastarorsnowflakemodel,andasubject-orienteddatabasedesign.(4).View:AnOLTPsystemfocusesmainlyonthecurrentdatawithinanenterpriseordepartment,withoutreferringtohistoricaldataordataindifferentorganizations.Incontrast,anOLAPsystemoftenspansmultipleversio

43、nsofadatabaseschema,duetotheevolutionaryprocessofanorganization.OLAPsystemsalsodealwithinformationthatoriginatesfromdifferentorganizations,integratinginformationfrommanydatastores.Becauseoftheirhugevolume,OLAPdataarestoredonmultiplestoragemedia.(5).Accesspatterns:TheaccesspatternsofanOLTPsystemconsistmainlyofshort,atomictransactions.Suchasystemrequiresconcurrencycontrolandrecoverymechanisms.However,accessestoOLAPsystem

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服