资源描述
八年级下册数学期末试卷模拟练习卷(Word版含解析)(1)
一、选择题
1.若二次根式有意义,则的取值范围是( ).
A. B. C. D.
2.若线段a,b,c首尾顺次连接后能组成直角三角形,则它们的长度比可能为( )
A.2:3:4 B.3:4:5 C.4:5:6 D.5:6:7
3.下列命题中,为假命题是( )
A.两组对边分别平行的四边形是平行四边形
B.两组对边分别相等的四边形是早行四边形
C.两组对角分别相等的四边形是平行四边形
D.对角线相等的四边形是平行四边形
4.甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
5.如图,已知点E、F、G、H分别是矩形ABCD各边的中点,则四边形EFGH是( )
A.矩形 B.菱形 C.矩形或菱形 D.不能确定的
6.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是( )
A.a2 B.a2 C.a2 D.a2
7.如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD'A',当点D的对应点D'落在OA上时,D'A'的延长线恰好经过点C,则点B的坐标为( )
A.(2,2) B.(2,2) C.(21,2) D.(21,2)
8.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9
二、填空题
9.计算:______.
10.已知菱形ABCD的面积为24,AC=6,则AB=___.
11.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____.
12.如阳,在矩形中,对角线、相交于点,点、分别是、的中点,若 cm,cm,则______ cm.
13.定义:对于一次函数,我们把点称为这个一次函数的伴随点.已知一次函数的伴随点在它的图象上,则__________.
14.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
15.如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
16.已知,如图点,,点为轴上一点,当最大时,点的坐标为________.
三、解答题
17.计算:
(1)2﹣6×;
(2)(﹣2)2﹣(﹣2)(+2);
(3)(1+)•(2﹣);
(4).
18.如图,一架长为5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.
(1)求BC的长;
(2)如果梯子的顶端B沿墙向下滑动2米,问梯子的底端A向外移动了多少米?
19.如图,每个小正方形的边长都为1,AB的位置如图所示.
(1)在图中确定点C,请你连接CA,CB,使CB⊥BA,AC=5;
(2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD=,AD=,直接写出BD的长.
20.如图,MN∥PQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D.试证明四边形ABCD是矩形.
21.阅读下列解题过程:
====
===
请回答下列问题:
(1)观察上面的解题过程,请直接写出结果.
= .
(2)利用上面提供的信息请化简:
的值.
22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.
(1)求丙水果每千克的售价是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费 元.
23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;
(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内)
24.在平面直角坐标系xOy中,对于任意两点M(x1,y1),N(x2,y2),我们将|x1﹣x2|+2|y1﹣y2|称为点M与点N的“纵2倍直角距离”,记作dMN.
例如:点M(﹣2,7)与N(5,6)的“纵2倍直角距离”dMN=|﹣2﹣5|+2|7﹣6|=9,
(1)①已知点P1(1,1),P2(﹣4,0),P3(0,),则在这三个点中,与原点O的“纵2倍直角距离”等于3的点是 ;
②已知点P(x,y),其中y≥0,若点P与原点O的“纵2倍直角距离”dPO=3,请在下图中画出所有满足条件的点P组成的图形.
(2)若直线y=2x+b上恰好有两个点与原点O的“纵2倍直角距离”等于3,求b的取值范围;
(3)已知点A(1,1),B(3,1),点T(t,0)是x轴上的一个动点,正方形CDEF的顶点坐标分别为C(t﹣,0),D(t,),E(t+,0),F(t,﹣).若线段AB上存在点G,正方形CDEF上存在点H,使得dGH=5,直接写出t的取值范围.
25.如图所示,四边形是正方形, 是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.
(1)求证: ;
(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;
(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据被开方数大于等于0列不等式求解即可.
【详解】
解:由题意得,x-2≥0,
解得x≥2.
故选:B.
【点睛】
本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
2.B
解析:B
【分析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;
B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;
C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;
D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.
故选:B.
【点睛】
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.D
解析:D
【解析】
【分析】
根据平行四边形的判定判断即可.
【详解】
解:、两组对边分别平行的四边形是平行四边形,是真命题,不符合题意;
、两组对边分别相等的四边形是平行四边形,是真命题,不符合题意;
、两组对角分别相等的四边形是平行四边形,是真命题,不符合题意;
、对角线互相平分的四边形是平行四边形,原命题是假命题,符合题意;
故选:D.
【点睛】
本题考查的是平行四边形的判定定理,解题关键是熟练运用平行四边形的判定定理.
4.C
解析:C
【解析】
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
5.B
解析:B
【分析】
根据矩形中,、、、分别是、、、的中点,利用三角形中位线定理证得,然后利用四条边都相等的四边形是菱形即可判定.
【详解】
解:四边形是菱形;
理由:如图,连接,,
、、、分别是、、、的中点,
,,,
同理,,,,,
∵在矩形中,
,
,
四边形是菱形.
故选:.
【点睛】
此题主要考查学生对菱形的判定、三角形中位线定理和矩形的性质的理解和掌握,证明此题的关键是正确利用三角形中位线定理进行证明.
6.C
解析:C
【解析】
【分析】
由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=a,可证△BEF是等边三角形,△GDH是等边三角形,四边形AEPG是平行四边形,可得AG=EP=a,即可求DG的长,由面积和差可求解.
【详解】
解:如图,连接AC,
∵四边形ABCD是菱形,∠ABC=60°,AE=2BE,
∴AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,
∴AC=AB=BC=a,BD=a,
∵将菱形ABCD沿EF,GH折叠,
∴EF⊥BP,∠BEF=∠PEF,BE=EP=a,
∴EF∥AC,
∴,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°=∠PEF,
∴∠BEP=∠BAD=120°,
∴EH∥AD,
同理可得:△GDH是等边三角形,GP∥AB,
∴四边形AEPG是平行四边形,
∴AG=EP=a,
∴DG=a,
∴六边形AEFCHG面积=S菱形ABCD﹣S△BEF﹣S△GDH=•a•a﹣×(a)2﹣×(a)2=a2,
故选:C.
【点睛】
本题考查了翻折变换,菱形的性质,平行四边形的判定和性质,等边三角形的性质判定等知识,求出DG的长是本题的关键.
7.D
解析:D
【解析】
【分析】
连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标.
【详解】
解:如图,连接,轴,绕点顺时针旋转得到,
∴,,
,
,
∵,
,
,
,
,
,,
,
∴,
∴,
∴点B的坐标为:,
故选:D.
【点睛】
本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键.
8.D
解析:D
【分析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,
所以当x>﹣9时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣9.
故选D.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题
9.##
【解析】
【分析】
由题可得,,即可得出,再根据二次根式的性质化简即可.
【详解】
解:由题可得,,
∴,
∴,
∴
.
故答案为:.
【点睛】
本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.
10.B
解析:5
【解析】
【分析】
根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长.
【详解】
解:菱形ABCD的面积=AC•BD,
∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,
∴另一条对角线BD的长=8cm;
∵OA=OC,OB=OD,
∴OA=3,OB=4,
又∵AC⊥BD,
∴由勾股定理得:,
故答案为:5
【点睛】
本题考查了菱形的性质.菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键.
11.A
解析:【解析】
【分析】
根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.
【详解】
解:∵∠D=90°,CD=6,AD=8,
∴AC===10,
∵∠ACD=2∠B,∠ACD=∠B+∠CAB,
∴∠B=∠CAB,
∴BC=AC=10,
∴BD=BC+CD=16,
故答案:16.
【点睛】
本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
12.B
解析:5
【分析】
先由勾股定理求出BD,再得出OD,证明EF是△AOD的中位线,即可得出结果.
【详解】
∵四边形ABCD是矩形,
∴∠BAD=90°,OD=BD,AD=BC=8,
∴,
∴OD=5cm,
∵点E、F分别是AO、AD的中点,
∴EF是△AOD的中位线,
∴EF=OD=2.5cm;
故答案为2.5.
【点睛】
本题考查了矩形的性质、勾股定理以及三角形中位线定理;熟练掌握菱形的性质,证明三角形中位线是解决问题的关键.
13.
【分析】
先写出的伴随点,再根据伴随点在它的图象上代入一次函数解析式,计算即可求得m.
【详解】
解:的伴随点为,
因为伴随点在它的图象上,则有
解得.
故答案为:.
【点睛】
本题考查一次函数图象上点的坐标特征. 一次函数图象上任意一点的坐标都满足函数关系式y=kx+b.
14.A
解析:AB=2BC.
【分析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
【点睛】
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
15.(-3,4)
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即
解析:(-3,4)
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.
【详解】
解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,
∴A(0,4),D(-1,0),C(0,-2),
∴AC=6;
联立 ,
解得,
∴点B的坐标为(-2,2),
∴,
∵,
∴可设直线AE的解析式为,
∴,
∴直线AE的解析式为,
∵E是直线AE与x轴的交点,
∴点E坐标为(2,0),
∴DE=3,
∴,
∴,
∴,
∴点P的坐标为(-3,4),
故答案为:(-3,4).
【点睛】
本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.
16.【分析】
作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.
【详解】
作A关于x轴对称点C,连接BC并
解析:
【分析】
作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.
【详解】
作A关于x轴对称点C,连接BC并延长交x轴于点P,
∵A(1,1),
∴C的坐标为(1,-1),
连接BC,
设直线BC的解析式为:,
,解得:,
∴直线BC的解析式为,
当y=0时,,
∴点P的坐标为:,
∵当B,C,P不共线时,根据三角形三边的关系可得:
|PA-PB|=|PC-PB|<BC,
∴此时|PA-PB|=|PC-PB|=BC取得最大值.
故答案为:.
【点睛】
本题考查了轴对称的性质,待定系数法求一次函数的解析式以及点与一次函数的关系.解题的关键是找到P点,注意数形结合思想与方程思想的应用.
三、解答题
17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用
解析:(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用二次根式的混合运算法则计算得出答案;
(4)直接利用二次根式的性质化简,进而得出答案.
【详解】
解:(1)2﹣6×
=6
=6
=;
(2)(﹣2)2﹣(﹣2)(+2)
=5+4-4-(13-4)
=9-4-9
=-4;
(3)(1+)•(2﹣)
=2-
=-1+;
(4)
=
=
=.
【点睛】
本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键.
18.(1)的长为4米;(2)梯子的底端A向外移动了米
【分析】
(1)直接利用勾股定理得出的长;
(2)根据及(1)中的答案求得的长,进而利用勾股定理得出答案即可.
【详解】
解:(1)一架长5米的梯子
解析:(1)的长为4米;(2)梯子的底端A向外移动了米
【分析】
(1)直接利用勾股定理得出的长;
(2)根据及(1)中的答案求得的长,进而利用勾股定理得出答案即可.
【详解】
解:(1)一架长5米的梯子,顶端靠在墙上,梯子底端到墙的距离米,
,
答:的长为4米;
(2)∵,,
∴,
,
∴,
答:梯子的底端A向外移动了米.
【点睛】
此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.
19.(1)见解析;(2).
【解析】
【分析】
(1)利用网格即可确定C点位置;
(2)由勾股定理在Rt△DBG中,可求BD的长.
【详解】
解:(1)如图,
∴
∴BC⊥AB,
在Rt△ACH中,A
解析:(1)见解析;(2).
【解析】
【分析】
(1)利用网格即可确定C点位置;
(2)由勾股定理在Rt△DBG中,可求BD的长.
【详解】
解:(1)如图,
∴
∴BC⊥AB,
在Rt△ACH中,AC=5;
(2)∵CD=,AD=,可确定D点位置如图,
∴在Rt△DBG中,BD=.
【点睛】
本题考查勾股定理的应用,利用三角形内角和确定C点位置,由勾股定理确定D点的位置是解题的关键.
20.见解析
【分析】
首先推出∠BAC=∠DCA,继而推出AB∥CD;推出∠BCA=∠DAC,进而推出AD∥CB,因此四边形ABCD平行四边形,再证明∠ABC=90°,可得平行四边形ABCD是矩形.
【
解析:见解析
【分析】
首先推出∠BAC=∠DCA,继而推出AB∥CD;推出∠BCA=∠DAC,进而推出AD∥CB,因此四边形ABCD平行四边形,再证明∠ABC=90°,可得平行四边形ABCD是矩形.
【详解】
证明:∵MN∥PQ,
∴∠MAC=∠ACQ, ∠ACP=∠NAC,
∠MAC+∠ACP=1800,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=∠MAC,∠DCA=∠ACQ,
又∵∠MAC=∠ACQ,
∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=∠ACP,∠DAC=∠NAC,
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
∴四边形ABCD是平行四边形,
∵∠BAC=∠MAC,∠BCA=∠ACP,∠MAC+∠ACP=180°,
∴∠BAC+∠BCA=90°,
∴∠ABC=90°,
∴四边形ABCD是矩形.
【点睛】
本题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形.
21.(1)(3)
【解析】
【分析】
(1)利用已知数据变化规律直接得出答案;
(2)利用分母有理化的规律将原式化简进而求出即可.
【详解】
解:(1)
(2)利用上面提供的信息请化简:
﹣1.
【点
解析:(1)(3)
【解析】
【分析】
(1)利用已知数据变化规律直接得出答案;
(2)利用分母有理化的规律将原式化简进而求出即可.
【详解】
解:(1)
(2)利用上面提供的信息请化简:
﹣1.
【点睛】
考核知识点:实数运算.
22.(1)10;(2)46
【分析】
(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即
解析:(1)10;(2)46
【分析】
(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于的分式方程,解之经检验后即可得出结论;
(2)设搭配方案中含丙水果千克,则含乙水果千克,甲水果千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于的一元一次不等式,解之即可得出的取值范围,设购买7千克水果的费用为元,利用总价单价数量,即可得出关于的函数关系式,再利用一次函数的性质即可解决最值问题.
【详解】
解:(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意,
,.
答:每千克丙水果的售价是10元.
(2)设搭配方案中含丙水果千克,则含乙水果千克,甲水果千克,
依题意得:,
解得:.
设购买7千克水果的费用为元,则.
,
随的增大而增大,
当时,取得最小值,最小值(元.
故答案为:46.
【点睛】
本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出关于的函数关系式.
23.(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的
解析:(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;
(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长.
【详解】
解:(1)证明:如图1,连结,
,,,
,
,
即;
四边形是平行四边形,
,
,
,
,
四边形是菱形
(2)如图2,连结,交于点,作于点,则,
由(1)得,四边形是菱形,
,
,
,,
,
,
,
由,且,得,
解得;
,
,
由,且,得,
点在边上且不与点、重合,
,
关于的函数解析式为,
(3)如图3,,且点在的延长线上,
,,
,
,
,
,
,
,
,
,
,
,
,
,,
,
,
即等腰三角形的底边长为8;
如图4,,作于点,于点,则,
,
,
,
,
,
由(2)得,,
,
,
即等腰三角形的底边长为;
如图5,,点与点重合,连结,
,,,
,
,
即,
等腰三角形的底边长为6.
综上所述,以为腰的等腰三角形的底边长为8或或6,
故答案为:8或或6.
【点睛】
此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.
24.(1)①P1,P3;②见解析;(2);(3)或.
【解析】
【分析】
(1)①根据“纵2倍直角距离”分别计算三个点到原点O的“纵2倍直角距离”,即可判断;
②根据“纵2倍直角距离”的定义得|x|+2
解析:(1)①P1,P3;②见解析;(2);(3)或.
【解析】
【分析】
(1)①根据“纵2倍直角距离”分别计算三个点到原点O的“纵2倍直角距离”,即可判断;
②根据“纵2倍直角距离”的定义得|x|+2|y|=3,根据y≥0,再分两种情况可得两个函数关系式,分别画出即可;
(2)作出与原点O的“纵2倍直角距离”等于3的点,通过观察作出图2可得:当直线y=2x+b与x轴的交点在对角线AC上(不含AC两点)时,恰好与四边形的边有两个公共点,由此即可求出b的取值范围;
(3)根据线段AB上存在点G的坐标求出当时,dGH=5所有满足条件的点H组成的图形,再结合图形的特征求出正方形CDEF与点H的满足“纵2倍直角距离”的点组成图形有公共点时t的取值范围.
【详解】
解:(1)①∵点点P1(1,1),P2(﹣4,0),P3(0,),
∴|1-0|+2|1-0|=3,||+2|0|=4,||+2||,
∴与原点O的“纵2倍直角距离”的点是P1,P3;
故答案为:P1,P3;
②设P(x,y),
∵点P与原点O的“纵2倍直角距离”dOP=3,
∴|x|+2|y|=3,
当y≥0,x≥0时,x+2y=3,即,
当y≥0,x≤0时,﹣x+2y=3,即,
如图1所示,
(2)如图,与原点O的“纵2倍直角距离”等于3的点组成图形是四边形ABCD, 直线y=2x+b经过A点或C点时,与四边形只有一个公共点,当直线y=2x+b与x轴交点在AC之间时,与菱形有两个公共点,
当直线,y=2x+b经过A点(-3,0)时;,解得:,
当直线,y=2x+b经过A点(3,0)时;,解得:,
∴b的取值范围为;
(3)设正方形CDEF上存在点H(x,y)
当线段AB上存在点G坐标为(1,1),则:dGH=,
当,时,,即,满足条件的图形为线段,
当,时,,即,满足条件的图形为线段,
当点G坐标从A(1,1)移动B(3,1)时对应满足条件的H点图形也平移2个单位到线段,线段,
∴满足点G的“纵2倍直角距离”的H点图形如图阴影部分所示:所有满足条件的H点是线段
其中:线段的解析式为,线段的解析式为,
由图可得:当正方形在线段下方时,D点在线段,正方形与满足条件的H点图形有公共点D(t,),
即:,解得,
同理求出当正方形在线段下方时,F点在线段,正方形与满足条件的H点图形有公共点D(t,),即,解得,
∴当,正方形与满足条件的H点图形由公共点存在,
同理可求:当,正方形与满足条件的H点图形由公共点存在,
综上所述:若线段AB上存在点G,正方形CDEF上存在点H,使得dGH=5,则或.
【点睛】
本题属于新定义与一次函数相结合的综合压轴题,读懂定义,紧扣定义解题,熟练掌握“纵2倍直角距离”的定义是解答此题的关键,根据G点的位置确定满足“纵2倍直角距离”的H点的范围是解(3)的难点.
25.(1)详见解析;(2),理由详见解析;(3),理由详见解析
【分析】
(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在
解析:(1)详见解析;(2),理由详见解析;(3),理由详见解析
【分析】
(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在边上截取,连接,证出即可得出答案.
【详解】
(1)证明:∵,
∴,
∴;
(2) 理由如下:
如图,取的中点,连接,
∵四边形为正方形,
∴ ,
∵分别为中点
∴,
∴
又∵
∴
∴,
又∵,平分
∴.
∴
在和中
,
∴
(3) .理由如下:
如图,在边上截取,连接,
∵四边形是正方形, ,
∴,
∴为等腰直角三角形,
∵
∴,
∵平分, ,
∴,
∴,
在和中
∴,
∴.
【点睛】
此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE≌△EBF.
展开阅读全文