收藏 分销(赏)

人教版八年级上册压轴题数学试题含答案.doc

上传人:快乐****生活 文档编号:1932607 上传时间:2024-05-11 格式:DOC 页数:20 大小:898.04KB 下载积分:10 金币
下载 相关 举报
人教版八年级上册压轴题数学试题含答案.doc_第1页
第1页 / 共20页
人教版八年级上册压轴题数学试题含答案.doc_第2页
第2页 / 共20页


点击查看更多>>
资源描述
人教版八年级上册压轴题数学试题含答案 1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系. (1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________; (2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由; 2.(1)模型:如图1,在中,平分,,,求证:. (2)模型应用:如图2,平分交的延长线于点,求证:. (3)类比应用:如图3,平分,,,求证:. 3.在平面直角坐标系中,,点在第一象限,, (1)如图,求点的坐标. (2)如图,作的角平分线,交于点,过点作于点,求证: (3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标. 4.在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(–a,0)、点 B(0, b),且 a、b 满足a2+b2–4a–8b+20=0,点 P 在直线 AB 的右侧,且∠APB=45°. (1)a=      ;b=        . (2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标; (3)若点 P 不在 x 轴上,是否存在点P,使△ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由. 5.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 6.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 7.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒. (1)求的值; (2)当为何值时, (3)如图2,在第一象限存在点,使,求. 8.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D. (1)求证:△AOB≌△COD; (2)如图2,连接AC,BD交于点P,求证:点P为AC中点; (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°. 【参考答案】 2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D 解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论; (2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. (1) 解:∠BAE+∠FAD=∠EAF. 理由:如图1,延长FD到点G,使DG=BE,连接AG, ∵, ∴, ∵DG=BE,, ∴△ABE≌△ADG, ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD,DG=BE, ∴,且AE=AG,AF=AF, ∴△AEF≌△AGF, ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. 故答案为:∠BAE+∠FAD=∠EAF; (2) 如图2,延长FD到点G,使DG=BE,连接AG, ∵∠B+∠ADF=180°,∠ADG+∠ADF=180°, ∴∠B=∠ADG, 又∵AB=AD, ∴△ABE≌△ADG(SAS), ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD=DG+FD=GF,AF=AF, ∴△AEF≌△AGF(SSS), ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF 【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等. 3.(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而 解析:(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解; (3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案; 【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC, ∴DE=DF, ∵ ,, ∴:=AB:AC; (2)如图,在AB上取点E,使得AE=AC,连接DE 又∵ AD平分∠CAE, ∴ ∠CAD=∠DAE, 在△ACD和△AED中, , ∴△ACD≌△AED(SAS), ∴CD=DE且∠ADC=∠ADE, ∴ , ∴ , ∴AB:AC=BD:CD; (3)如图延长BE至M,使EM=DC,连接AM, ∵ ∠D+∠AEB=180°, 又∵∠AEB+∠AEM=180°, ∴∠D=∠AEM, 在△ADC与△AEM中, , ∴△ADC≌△AEM(SAS), ∴∠DAC=∠EAM=∠BAE,AC=AM, ∴AE为∠BAM的角平分线, 故 , ∴BE:CD=AB:AC; 【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键; 4.(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3) 解析:(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标. 【详解】解:如图中,作垂足为, , ,, 在和中, , 点坐标; 如图,延长相交于点, , 在和中, , , , 在和中, , , ; (3)①如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ②如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ③如图,,,过点P作轴于点E,过点A作于点D, ∵,, ∴, 在和中, , ∴, 设,, ∵,, ∴,解得, ∴,, ∴; 综上:点P的坐标是或或. 【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想. 5.(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠AP 解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点B的坐标; (3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标. 【详解】解:(1)∵a2+b2–4a–8b+20=0, ∴( a2–4a+4)+(b2–8b+16)=0, ∴( a–2)2+(b–4) 2=0 ∴a=2,b=4, 故答案为:2,4; (2)如图 1,由(1)知,b=4, ∴B(0,4), ∴OB=4, 点 P 在直线 AB 的右侧,且在 x 轴上, ∵∠APB=45°, ∴OP=OB=4, ∴P(4,0), 故答案为:(4,0); (3)存在.理由如下: 由(1)知 a=﹣2,b=4, ∴A(﹣2,0),B(0,4), ∴OA=2,OB=4, ∵△ABP 是直角三角形,且∠APB=45°, ∴只有∠ABP=90°或∠BAP=90°, Ⅰ、如图 2,当∠ABP=90°时, ∵∠APB=∠BAP=45°, ∴AB=PB , 过点 P 作 PC⊥OB 于 C, ∴∠BPC+∠CBP=90°, ∵∠CBP+∠ABO=90 °, ∴∠ABO=∠BPC, 在△AOB 和△BCP 中, , ∴△AOB≌△BCP(AAS), ∴PC=OB=4,BC=OA=2, ∴OC=OB﹣BC=2, ∴P(4,2),Ⅱ、如图3,当∠BAP=90°时, 过点 P'作 P'D⊥OA 于 D, 同Ⅰ的方法得,△ADP'≌△BOA, ∴DP'=OA=2,AD=OB=4, ∴OD=AD﹣OA=2, ∴P'(2,﹣2); 即:满足条件的点 P(4,2)或(2,﹣2); 【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论. 6.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB 解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°,连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点. 7.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 8.(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) ( 解析:(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) (2)当动点沿轴正方向运动时,如解图-2-1:     当动点沿轴负方向运动时,如解图-2-2: (3)过作,连 在与 ∴, 在与中 ∴,, ∴,, ∴是等边三角形, ∴, 又∵ ∴ ∵ ∴ 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键. 9.(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延 解析:(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明. 【详解】(1)轴于点,轴于点, , ,, ,, ; (2) 如图2,过点作轴,交于点, , , 轴, , , , ,,, , 在与中, , , ,即点为中点; (3) 如图3,延长到,使,连接,,延长交于点, ,,, , ,, , , , , , ,, , , , , ,, , ,即. 【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服