收藏 分销(赏)

人教版初二上学期压轴题模拟数学质量检测试卷答案.doc

上传人:精**** 文档编号:1926546 上传时间:2024-05-11 格式:DOC 页数:22 大小:1.26MB 下载积分:10 金币
下载 相关 举报
人教版初二上学期压轴题模拟数学质量检测试卷答案.doc_第1页
第1页 / 共22页
人教版初二上学期压轴题模拟数学质量检测试卷答案.doc_第2页
第2页 / 共22页


点击查看更多>>
资源描述
人教版初二上学期压轴题模拟数学质量检测试卷答案 1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系. (1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________; (2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由; 2.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足. (1)直接写出______,______; (2)连接AB,P为内一点,. ①如图1,过点作,且,连接并延长,交于.求证:; ②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标. 3.在平面直角坐标系中,,点在第一象限,, (1)如图,求点的坐标. (2)如图,作的角平分线,交于点,过点作于点,求证: (3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标. 4.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 5.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 6.如图,等边中,点在上,延长到,使,连,过点作与点. (1)如图1,若点是中点, 求证:①;②. (2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论; (3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论. 7.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA⊥BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E. (1)填空:点B的坐标是    ; (2)如图2,连接DE,过点C作CH⊥CA于C,交x轴于点H,求证:∠ADB=∠CDE; (3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连PO,过P作∠OPG=45°交BN于G.求证:点G是BN中点. 8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,. (1)如图1,若,求的度数. (2)如图1,求证:. (3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明). 【参考答案】 2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D 解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论; (2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. (1) 解:∠BAE+∠FAD=∠EAF. 理由:如图1,延长FD到点G,使DG=BE,连接AG, ∵, ∴, ∵DG=BE,, ∴△ABE≌△ADG, ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD,DG=BE, ∴,且AE=AG,AF=AF, ∴△AEF≌△AGF, ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. 故答案为:∠BAE+∠FAD=∠EAF; (2) 如图2,延长FD到点G,使DG=BE,连接AG, ∵∠B+∠ADF=180°,∠ADG+∠ADF=180°, ∴∠B=∠ADG, 又∵AB=AD, ∴△ABE≌△ADG(SAS), ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD=DG+FD=GF,AF=AF, ∴△AEF≌△AGF(SSS), ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF 【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等. 3.(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明 解析:(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB; ②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解. 【详解】(1)∵, ∴, ∴,, 解得:,, 故答案为:3,; (2)①连接AC, ∵∠COP=∠AOB=90°, ∴∠COP-∠AOP =∠AOB-∠AOP, ∴, 在△OPB和△OCA中, , ∴△OPB≌△OCA(SAS), ∴AC=BP,∠OCA=∠OPB=90°, 过点B作BN⊥BP,交CP的延长线于点N, ∵∠COP=90°,OP=OC, ∴∠OCP=∠OPC=∠ACP=45°, ∵∠OPB=90°, ∴∠BPN=45°, ∴△BNP为等腰直角三角形, ∴∠BPN=∠N=45°, ∴BN=BP=AC, 在△ACD和△BND中, , ∴△ACD≌△BND(AAS), ∴AD=DB; ②∵∠AOB=90°,AO=OB, ∴△AOB为等腰直角三角形, ∴∠OBA=45°, ∵∠MBO=∠ABP, ∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°, ∴∠MBP=45°, ∵OP⊥BP, ∴△BMP为等腰直角三角形, ∴MP=BP, 过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE, ∴∠MPE+∠EMP=∠MPE +∠FPB=90°, ∴∠EMP=∠FPB, 在△PBF和△MPE中, , ∴△PBF≌△MPE(AAS), ∴BF=EP,PF=ME, ∵P(2n,−n), ∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n, ∴MH=ME-EH=3−n−2n=3−3n, ∴E(2n,n) ,M(3n−3,n), ∴点P,E关于x轴对称, ∴OE=OP,∠OEP=∠OPE, 同理OM=OE,点M,E关于y轴对称, ∴3n−3+2n=0, 解得,即点M的坐标为(,). 【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题. 4.(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3) 解析:(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标. 【详解】解:如图中,作垂足为, , ,, 在和中, , 点坐标; 如图,延长相交于点, , 在和中, , , , 在和中, , , ; (3)①如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ②如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ③如图,,,过点P作轴于点E,过点A作于点D, ∵,, ∴, 在和中, , ∴, 设,, ∵,, ∴,解得, ∴,, ∴; 综上:点P的坐标是或或. 【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想. 5.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接DK, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 6.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键. 7.(1)①见解析;②见解析 (2)成立,见解析 (3)成立,见解析 【分析】(1)证明,推出,利用等腰三角形的性质,可得结论; (2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论 解析:(1)①见解析;②见解析 (2)成立,见解析 (3)成立,见解析 【分析】(1)证明,推出,利用等腰三角形的性质,可得结论; (2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论; (3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论. (1) 证明:如图 ①∵为等边三角形, ∴, 又为中点, ∴ , ∵, ∴ , ∴, ∴; ②∵, ∴为等腰三角形, ∵, ∴. (2) 仍然成立,理由如下: 如图,过点D作DM//BC交AC于M ∵为等边三角形, ∴, ∴, ∵, ∴, ∴,为等边三角形, ∴, ∵, ∴, ∵, ∴, 在和中, , ∴, ∴, 而, ∴. (3) 的结论仍然成立,理由如下:如图为所求作图. 作交的延长线于, 易证为等边三角形, ,, 而, ∴, ∵,, ∴, ∵,, ∴, 在和中, , ∴, ∴, ∵, ∴. 【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题. 8.(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在 解析:(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在BD上截取BF= AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案; (3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了. (1) 解:过点C作CG⊥x轴于G,如图所示: ∵C(3,﹣3), ∴CG=3,OG=3, ∵∠BOA=∠CGA=90°, ∴∠ABO+∠BAO=∠BAO+∠CAG=90°, ∴∠ABO=∠CAG, 又∵AB=AC, ∴△ABO≌△CAG(AAS), ∴AO=CG=3,OB=AG=AO+OG=6, ∴点B的坐标是(0,6). (2) 证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF∥AO. 同(1)得:△ABO≌△CAG(AAS), ∴AO=CG=3, ∵CF=3, ∴AO=CF, ∵CF∥AO ∴∠DAO=∠DCF,∠AOD=∠CFD, ∴△AOD≌△CFD(ASA), ∴AD=CD, ∵CA⊥BA,CH⊥CA, ∴∠BAD=∠ACH=90°, 又∵∠ABO=∠CAG,AB=AC, ∴△BAD≌△ACH(ASA), ∴AD=CH,∠ADB=∠AHC ∴CD=CH, ∵BA=CA, ∴△ABC是等腰直角三角形, ∴∠ACB=45°, ∴∠HCE=90°﹣∠ACB=45°, ∴∠DCE=∠HCE=45°, 又∵CE=CE, ∴△DCE≌△HCE(SAS), ∴∠CDE=∠CHE, ∴∠ADB=∠CDE. (3) 证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L. 则△OPK是等腰直角三角形, ∴∠OKP=∠OPK=45°,OK=OP, ∵PN=PF, ∴△PNF是等腰直角三角形, ∴∠PFN=∠PNF=45°, ∵PL⊥NF, ∴∠FPL=45°, 则∠OPF=∠OPL+45°,∠GPN=∠OPL=45°﹣∠MPO, ∵∠KOB+∠BOP=∠FOP+∠BOP=90°, ∴∠KOB=∠FOP, 又∵OB=OF=6, ∴△OKB≌△OPF(SAS), ∴KB=PF=PN,∠OKB=45°+∠GKB=∠OPF=∠OPL+45°, ∴∠GKB=∠OPL=∠GPN, 又∵∠KGB=∠PGN, ∴△KBG≌△PNG(SAS), ∴BG=NG, 即点G为BN的中点. 【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型. 9.(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证 解析:(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) ∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:延长AD至H,使DH=AD,连接BH, ∵EF=2AD, ∴AH=EF, 在△BDH和△CDA中, , ∴△BDH≌△CDA, ∴HB=AC=AF,∠BHD=∠CAD, ∴AC∥BH, ∴∠ABH+∠BAC=180°, ∵∠EAF+∠BAC=180°, ∴∠EAF=∠ABH, 在△ABH和△EAF中, , ∴△ABH≌△EAF, ∴∠AEF=∠ABH,EF=AH=2AD, (3) 结论:∠GAF-∠CAF=60°. 由(1)得,AD=EF,又点G为EF中点, ∴EG=AD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°, ∴△AEB是等边三角形, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF,∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°-∠CAF)=150°, ∴∠GAF-∠CAF=60°. . 【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服