资源描述
人教版初二上学期压轴题模拟数学质量检测试卷答案
1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系.
(1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________;
(2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;
2.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
3.在平面直角坐标系中,,点在第一象限,,
(1)如图,求点的坐标.
(2)如图,作的角平分线,交于点,过点作于点,求证:
(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标.
4.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
5.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°;
(3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系.
6.如图,等边中,点在上,延长到,使,连,过点作与点.
(1)如图1,若点是中点,
求证:①;②.
(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;
(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论.
7.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA⊥BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E.
(1)填空:点B的坐标是 ;
(2)如图2,连接DE,过点C作CH⊥CA于C,交x轴于点H,求证:∠ADB=∠CDE;
(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连PO,过P作∠OPG=45°交BN于G.求证:点G是BN中点.
8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,.
(1)如图1,若,求的度数.
(2)如图1,求证:.
(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明).
【参考答案】
2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D
解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;
(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
(1)
解:∠BAE+∠FAD=∠EAF.
理由:如图1,延长FD到点G,使DG=BE,连接AG,
∵,
∴,
∵DG=BE,,
∴△ABE≌△ADG,
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD,DG=BE,
∴,且AE=AG,AF=AF,
∴△AEF≌△AGF,
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
故答案为:∠BAE+∠FAD=∠EAF;
(2)
如图2,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,
∴∠B=∠ADG,
又∵AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD=DG+FD=GF,AF=AF,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF
【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.
3.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
4.(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)
解析:(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标.
【详解】解:如图中,作垂足为,
,
,,
在和中,
,
点坐标;
如图,延长相交于点,
,
在和中,
,
,
,
在和中,
,
,
;
(3)①如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
②如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
③如图,,,过点P作轴于点E,过点A作于点D,
∵,,
∴,
在和中,
,
∴,
设,,
∵,,
∴,解得,
∴,,
∴;
综上:点P的坐标是或或.
【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想.
5.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
6.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可
解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
(2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可;
(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可.
【详解】(1)
由绝对值的非负性和平方数的非负性得:
解得:;
(2)如图1,作于E
是等腰直角三角形,
;
(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C
∴
∵在四边形MCOB中,
是等腰直角三角形
∴
是等腰直角三角形
.
【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
7.(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论
解析:(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论;
(3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论.
(1)
证明:如图
①∵为等边三角形,
∴,
又为中点,
∴ ,
∵,
∴ ,
∴,
∴;
②∵,
∴为等腰三角形,
∵,
∴.
(2)
仍然成立,理由如下:
如图,过点D作DM//BC交AC于M
∵为等边三角形,
∴,
∴,
∵,
∴,
∴,为等边三角形,
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
而,
∴.
(3)
的结论仍然成立,理由如下:如图为所求作图.
作交的延长线于,
易证为等边三角形,
,,
而,
∴,
∵,,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∵,
∴.
【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题.
8.(1)(0,6)
(2)见解析
(3)见解析
【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案;
(2)在
解析:(1)(0,6)
(2)见解析
(3)见解析
【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案;
(2)在BD上截取BF= AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案;
(3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了.
(1)
解:过点C作CG⊥x轴于G,如图所示:
∵C(3,﹣3),
∴CG=3,OG=3,
∵∠BOA=∠CGA=90°,
∴∠ABO+∠BAO=∠BAO+∠CAG=90°,
∴∠ABO=∠CAG,
又∵AB=AC,
∴△ABO≌△CAG(AAS),
∴AO=CG=3,OB=AG=AO+OG=6,
∴点B的坐标是(0,6).
(2)
证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF∥AO.
同(1)得:△ABO≌△CAG(AAS),
∴AO=CG=3,
∵CF=3,
∴AO=CF,
∵CF∥AO
∴∠DAO=∠DCF,∠AOD=∠CFD,
∴△AOD≌△CFD(ASA),
∴AD=CD,
∵CA⊥BA,CH⊥CA,
∴∠BAD=∠ACH=90°,
又∵∠ABO=∠CAG,AB=AC,
∴△BAD≌△ACH(ASA),
∴AD=CH,∠ADB=∠AHC
∴CD=CH,
∵BA=CA,
∴△ABC是等腰直角三角形,
∴∠ACB=45°,
∴∠HCE=90°﹣∠ACB=45°,
∴∠DCE=∠HCE=45°,
又∵CE=CE,
∴△DCE≌△HCE(SAS),
∴∠CDE=∠CHE,
∴∠ADB=∠CDE.
(3)
证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L.
则△OPK是等腰直角三角形,
∴∠OKP=∠OPK=45°,OK=OP,
∵PN=PF,
∴△PNF是等腰直角三角形,
∴∠PFN=∠PNF=45°,
∵PL⊥NF,
∴∠FPL=45°,
则∠OPF=∠OPL+45°,∠GPN=∠OPL=45°﹣∠MPO,
∵∠KOB+∠BOP=∠FOP+∠BOP=90°,
∴∠KOB=∠FOP,
又∵OB=OF=6,
∴△OKB≌△OPF(SAS),
∴KB=PF=PN,∠OKB=45°+∠GKB=∠OPF=∠OPL+45°,
∴∠GKB=∠OPL=∠GPN,
又∵∠KGB=∠PGN,
∴△KBG≌△PNG(SAS),
∴BG=NG,
即点G为BN的中点.
【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型.
9.(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证
解析:(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:延长AD至H,使DH=AD,连接BH,
∵EF=2AD,
∴AH=EF,
在△BDH和△CDA中,
,
∴△BDH≌△CDA,
∴HB=AC=AF,∠BHD=∠CAD,
∴AC∥BH,
∴∠ABH+∠BAC=180°,
∵∠EAF+∠BAC=180°,
∴∠EAF=∠ABH,
在△ABH和△EAF中,
,
∴△ABH≌△EAF,
∴∠AEF=∠ABH,EF=AH=2AD,
(3)
结论:∠GAF-∠CAF=60°.
由(1)得,AD=EF,又点G为EF中点,
∴EG=AD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,
∴△AEB是等边三角形,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°-∠CAF)=150°,
∴∠GAF-∠CAF=60°.
.
【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文