收藏 分销(赏)

人教版初二上册压轴题数学试卷(一)[001].doc

上传人:快乐****生活 文档编号:1922099 上传时间:2024-05-11 格式:DOC 页数:20 大小:1.02MB
下载 相关 举报
人教版初二上册压轴题数学试卷(一)[001].doc_第1页
第1页 / 共20页
人教版初二上册压轴题数学试卷(一)[001].doc_第2页
第2页 / 共20页
人教版初二上册压轴题数学试卷(一)[001].doc_第3页
第3页 / 共20页
人教版初二上册压轴题数学试卷(一)[001].doc_第4页
第4页 / 共20页
人教版初二上册压轴题数学试卷(一)[001].doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、人教版初二上册压轴题数学试卷(一)1如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数2如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,BAC=30,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE(1)如图1,若点P与点C重合,求ABE的度数;(2)如图2,若P在C点上方,求证:PD

2、+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直接写出结果)3阅读下列材料,完成相应任务数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角

3、三角形,在中,;中,连接试探究与的数量关系,并说明理由4在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论5如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:C

4、BD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P,连PM、PO试探究PM和PO的关系6阅读理解题:定义:如果一个数的平方等于1,记为i21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;根据以上信息,完成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)

5、已知a+bi(a,b为实数),求的最小值7如图,等边中,点在上,延长到,使,连,过点作与点(1)如图1,若点是中点,求证:;(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1)(2),证明见详解

6、(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:

7、由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键3(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60

8、,故ABE=90;解析:(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60,故ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,构造含30度角的直角PCG、直角CPH以及全等三角形(RtPGBRtPHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可【详解】(1)解:如图1,点P与点C重合,CD是线段AB的垂直平分线,PA=PB,

9、PAB=PBA=30,BPE=PAB+PBA=60,PB=PE,BPE为等边三角形,CBE=60,ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,CD垂直平分AB,CA=CB,BAC=30,ACD=BCD=60,GCP=HCP=BCE=ACD=BCD=60,GPC=HPC=30,PG=PH,CG=CH=CP,CD=AC,在RtPGB和RtPHE中,RtPGBRtPHE(HL)BG=EH,即CB+CG=CE-CH,CB+CP=CE-CP,即CB+CP=CE,又CB=AC,CP=PD-CD=PD-AC,PD+AC=CE;(3)当P在C点上方时,由(2)得:PD

10、=CE-AC,当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在线段CD上时,如图3,过P作PHAE于H,连BC,作PGBC交BC于G,此时RtPGBRtPHE(HL),BG=EH,即CB-CG=CE+CH,CB-CP=CE+CP,即CP=CB-CE,又CB=AC,PD=CD-CP=AC-CB+CE,PD=CE-AC当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在D点下方时,如图4,同理,PD=AC-CE,当AC=6,CE=2时,PD=3-2=1故答案为:1【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定

11、与性质等知识点,难度较大,解题时,注意要分类讨论4任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详

12、解】解:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BAE=90,CAF=90EAF+BAC=360-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAFGCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,

13、构造全等三角形是解本题的关键5(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB解析:(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB45,即可解决问题;(2)证明BADCAE,得到BACE,BACB,即可解决问题;证明BADCAE,得到ABDACE,借助三角形外角性质即可解决问题【详解】解:(1)AB=AC,BAC=90,ABC=ACB=45,DAE=BAC,B

14、AD=CAE,AB=AC,AD=AE,BADCAE(SAS)ABC=ACE=45,BCE=ACB+ACE=90,故答案为:;(2)理由:,即又,如图:当点D在射线BC上时,+=180,连接CE,BAC=DAE,BAD=CAE,在ABD和ACE中,ABDACE(SAS),ABD=ACE,在ABC中,BAC+B+ACB=180,BAC+ACE+ACB=BAC+BCE=180,即:BCE+BAC=180,+=180,如图:当点D在射线BC的反向延长线上时,=连接BE,BAC=DAE,BAD=CAE,又AB=AC,AD=AE,ABDACE(SAS),ABD=ACE,ABD=ACE=ACB+BCE,AB

15、D+ABC=ACE+ABC=ACB+BCE+ABC=180,BAC=180-ABC-ACB,BAC=BCE=;综上所述:点D在直线BC上移动,+=180或=【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点6(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完

16、全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三

17、角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.7(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条解析:(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1)i3i2i1ii,i4i2i21(1)1,设Si+i

18、2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为25【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键8(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得

19、结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论解析:(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论;(3)结论仍然成立,过点D作DM/BC交AC于M,证明,可得结论(1)证明:如图为等边三角形,又为中点, , ,;,为等腰三角形,(2)仍然成立,理由如下:如图,过点D作DM/BC交AC于M为等边三角形,为等边三角形,在和中, ,而,(3)的结论仍然成立,理由如下:如图为所求作图作交的延长线于,易证为等边三角形,而,在和中,【点睛】本题属于三角形

20、的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服