资源描述
八年级数学上册压轴题模拟质量检测试卷附答案
1.已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解.
(1)求点A的坐标;
(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;
(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.
2.在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足.
(1)求A、B两点的坐标;
(2)如图(1),点C为x轴负半轴一动点,,于D,交y轴于点E,求证:平分.
(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.
3.阅读下列材料,完成相应任务.
数学活动课上,老师提出了如下问题:
如图1,已知中,是边上的中线.
求证:.
智慧小组的证法如下:
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴(依据一)∴
在中,(依据二)
∴.
任务一:上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______________________________________________;
依据2:______________________________________________.
归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
任务二:如图3,,,则的取值范围是_____________;
任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由.
4.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
5.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.
(1)求△ABC的面积;
(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;
(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.
6.阅读理解题:
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.
例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;
(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ;
(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);
(3)已知a+bi=(a,b为实数),求的最小值.
7.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点.
(1)若+b2-10b+25=0,判断△AOB的形状,并说明理由;
(2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长;
(3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围.
8.在Rt△中,,∠,点是上一点.
(1)如图,平分∠,求证;
(2)如图,点在线段上,且∠,∠,求证;
(3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果).
【参考答案】
2.(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)
解析:(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)由“SAS”可证△ABG≌△OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH=60°,可得AH=6,即可求解.
【详解】解:(1)∵是方程的解.
解得:,
检验当时,,,
∴是原方程的解,
∴点;
(2)∵△ACD,△ABO是等边三角形,
∴AO=AB,AD=AC,∠BAO=∠CAD=60°,
∴∠CAO=∠BAD,且AO=AB,AD=AC,
∴△CAO≌△DAB(SAS)
∴∠DBA=∠COA=90°,
∴∠ABE=90°,
∵∠AOE+∠ABE+∠OAB+∠BEO=360°,
∴∠BEO=120°;
(3)GH−AF的值是定值,
理由如下:∵△ABC,△BFG是等边三角形,
∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°,
∴∠OBF=∠ABG,且OB=AB,BF=BG,
∴△ABG≌△OBF(SAS),
∴OF=AG,∠BAG=∠BOF=60°,
∴AG=OF=OA+AF=3+AF,
∵∠OAH=180°−∠OAB−∠BAG,
∴∠OAH=60°,且∠AOH=90°,OA=3,
∴AH=6,
∴GH−AF=AH+AG−AF=6+3+AF−AF=9.
【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.
3.(1),;(2)证明见解析;(3)不变化,.
【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;
(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;
(3)由于点F是等
解析:(1),;(2)证明见解析;(3)不变化,.
【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;
(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;
(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BF.∠BFO=∠GFH,进而得出∠OFH=∠BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可.
【详解】解:(1)∵
∴,
∴ ,即.
∴,.
(2)如图,过点O作于M,于N,
根据题意可知.
∵,
∴,
∴.
∵,,
∴OA=OB=6.
在和中, ,
∴.
∴, ,.
∴,
∴,
∴点O一定在∠CDB的角平分线上,
即OD平分∠CDB.
(3)如图,连接OF,
∵是等腰直角三角形且点F为AB的中点,
∴,,OF平分∠AOB.
∴.
又∵,
∴,
∴.
∵,
∴.
又∵,
∴.
在和中 ,
∴.
∴,
∴.
故不发生变化,且.
【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题.
4.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判
解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定方法判断即可;
依据2:根据三角形三边关系判断;
任务二:可根据任务一的方法直接证明即可;
任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可.
【详解】解:任务一:
依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);
依据2:三角形两边的和大于第三边.
任务二:
任务三:EF=2AD.理由如下:
如图延长AD至G,使DG=AD,
∵AD是BC边上的中线
∴BD=CD
在△ABD和△CGD中
∴△ABD≌△CGD
∴AB=CG,∠ABD=∠GCD
又∵AB=AE
∴AE=CG
在△ABC中,∠ABC+∠BAC+∠ACB=180°,
∴∠GCD+∠BAC+∠ACB=180°
又∵∠BAE=90°,∠CAF=90°
∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∴∠EAF=∠GCD
在△EAF和△GCA中
∴△EAF≌△GCA
∴EF=AG
∴EF=2AD.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.
5.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
6.(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点
解析:(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°.
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,
即可得解.
【详解】解:(1)由已知条件得:
AC=12,OB=6
∴
(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,
∵△BDE是等腰直角三角形,
∴DE=DB, ∠BDE=90°,
∴
∵
∴
∴
∵EF轴,
∴
∴DF=BO=AO,EF=OD
∴AF=EF
∴
∴∠BAE=90°
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,
∵,OA=6,
∴OM+ON=3
【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.
7.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条
解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;
(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.
【详解】(1)i3=i2•i=﹣1×i=﹣i,
i4=i2•i2=﹣1×(﹣1)=1,
设S=i+i2+i3+…+i2021,
iS=i2+i3+…+i2021+i2022,
∴(1﹣i)S=i﹣i2022,
∴S=,
故答案为﹣i,1,;
(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)
=3﹣4i+3i﹣4i2﹣(4﹣9i2)
=3﹣i+4﹣4﹣9
=﹣i﹣6;
(3)a+bi====4+3i,
∴a=4,b=3,
∴=,
∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,
∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,
∴A'B==25,
∴的最小值为25.
【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.
8.(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)
解析:(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度;
(3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长.
(1)
解:结论:△OAB是等腰直角三角形;理由如下:
∵+b2-10b+25=0,即,
∴,解得:,
∴A(−5,0),B(0,5),
∴OA=OB=5,
∴△AOB是等腰直角三角形.
(2)
解:∵AM⊥OQ,BN⊥OQ,
∴,
,
∴,
∴,
∵在△AMO与△ONB中,
∴△AMO≌△ONB(AAS),
∴AM=ON=4,BN=OM,
∵MN=7,
∴OM=3,
∴BN=OM=3.
(3)
解:结论:PB的长为定值.理由如下,
作EK⊥y轴于K点,如图所示:
∵△ABE为等腰直角三角形,
∴AB=BE,∠ABE=90°,
∴∠EBK+∠ABO=90°,
∵∠EBK+∠BEK=90°,
∴∠ABO=∠BEK,
∵在△AOB和△BKE中,
∴△AOB≌△BKE(AAS),
∴OA=BK,EK=OB,
∵△OBF为等腰直角三角形,
∴OB=BF,
∴EK=BF,
∵在△EKP和△FBP中,
∴△PBF≌△PKE(AAS),
∴PK=PB,
∴PB=BK=OA=.
【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.
9.(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A
解析:(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题.
(3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题.
(1)
证明:如图1中,作DH⊥AB于H.
∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,
∴△ADC≌△ADH(ASA),
∴AC=AH,DC=DH,
∵CA=CB,∠C=90°,
∴∠B=45°,
∵∠DHB=90°,
∴∠HDB=∠B=45°,
∴HD=HB,
∴BH=CD,
∴AB=AH+BH=AC+CD.
(2)
如图2中,作CM⊥CE交AD的延长线于M,连接BM.
,
,
,
,
,
∵∠ACB=∠ECM=90°,
,
,
∵CA=CB,CE=CM,
∴△ACE≌△BCM(SAS),
∴AE=BM,
∵在Rt△EMB中,∠MEB=30°,
∴BE=2BM=2AE.
(3)
解:如图3中,作CH⊥MN于H.
,
,
,
,
,
,
,
,,
,
,
,
,
是的中线,
,
,,
,
,
,
.
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文