1、2024年人教版中学七7年级下册数学期末学业水平试卷附解析一、选择题1如图,和不是同旁内角的是( )ABCD2如图所示的车标,可以看作由平移得到的是( )ABCD3坐标平面内的下列各点中,在轴上的是( )ABCD4以下命题是真命题的是()A相等的两个角一定是对顶角B过直线外一点有且只有一条直线与已知直线平行C两条平行线被第三条直线所截,内错角互补D在同一平面内,垂直于同一条直线的两条直线互相垂直5如图,一副直角三角板图示放置,点在的延长线上,点在边上,则( )ABCD6对于有理数ab,定义mina,b的含义为:当ab时,mina,ba,当ba时,mina,bb例如:min1,22,已知min,
2、aa,min,b,且a和b为两个连续正整数,则ab的立方根为( )A1B1C2D27如图1,则;如图2,则;如图3,则;如图4,直线,点O在直线EF上,则以上结论正确的个数是( )A1个B2个C3个D4个8如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,1),那么点A23的坐标是()A(7,1)B(8,1)C(7,1)D(8,1)九、填空题9如果和互为相反数,那么_十、填空题10点关于轴的对称点的坐标为,则的值是_十一、填空题11如图,AE是ABC的
3、角平分线,ADBC于点D,若BAC=130,C=30,则DAE的度数是_.十二、填空题12如图,直角三角板直角顶点在直线上已知,则的度数为_十三、填空题13将一张长方形纸条折成如图的形状,已知,则_十四、填空题14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_十五、填空题15已知点,且点到两坐标轴的距离相等,则点的坐标是_十六、填空题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2018个单位长度且
4、没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_十七、解答题17计算:(1)利用平方根意义求x值: (2)十八、解答题18已知,求下列各式的值:(1);(2)十九、解答题19请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,12,AD求证:BC证明:12,(已知)又:13,( )2_(等量代换)(同位角相等,两直线平行)ABFD( )AD(已知)D_(等量代换)_CD( )BC( )二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到原点的距离是_;(2)将点向轴的负方向平移个单位,则它与
5、点_重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离是多少?二十一、解答题21大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分请解答下列问题:(1)的整数部分是_,小数部分是_(2)如果的小数部分是a,的整数部分是b,求的值(3)已知,其中x是正整数,求的相反数二十二、解答题22学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏
6、费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由(取3)二十三、解答题23直线ABCD,点P为平面内一点,连接AP,CP(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与APC之间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理由二十四、解答题24综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EFMN,点A、B分别为直线EF、MN上的一点
7、,点P为平行线间一点,请直接写出PAF、PBN和APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线mn,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动当点P在A、B(不与A、B重合)两点之间运动时,设ADP,BCP则CPD,之间有何数量关系?请说明理由;若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出CPD,之间的数量关系二十五、解答题25如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点
8、O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由【参考答案】一、选择题1B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角根据同旁内角的概念可得答案【详解】解:选项A、C、D中,1与2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B中,1与2的两条边都不在同一条直线上,不是同旁内角故选:B【
9、点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形2B【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、不能经过平移得到的,故不符合题意;B、可以经过平解析:B【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、不能经过平移得到的,故不符合题意;B、可以经过平移得到的,故符合题意;C、不能经过平移得到的,故不符合题意;D、不能经过平移得到的,故不符合题意;故选B.【点睛】本题主要考查了图形的平移,解题的关键在
10、于能够熟练掌握图形平移的概念.3A【分析】根据y轴上点的横坐标为0,即可判断【详解】解:y轴上点的横坐标为0,点符合题意故选:A【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为04B【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项【详解】解:A、相等的两个角不一定是对顶角,故原命题错误,是假命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意;C、两条平行线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故原命题错误,是假命题,不符合
11、题意,故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大5B【分析】根据平行线的性质可知, ,由 即可得出答案。【详解】解:, 故答案是B【点睛】本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补.6A【分析】根据a,b的范围即可求出ab的立方根【详解】解:根据题意得:a,b,253036,56,a和b为两个连续正整数,a5,b6,ab1,1的立方根是1,故选:A【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键7B【分析】如图1所示
12、,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,C+CEF=180,则A+C+AEC=360,故错误;如图2所示,过点P作PE/AB,由平行线的性质即可得到A=APE=180,C=CPE,再由APC=APE=CPE,即可得到APC=A-C,即可判断;如图3所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,1=CEF,再由AEF+CEF=AEC,即可判断 ;由平行线的性质即可得到,再由,即可判断【详解】解:如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,C+CEF=180,A+AEF+C+CEF=360,又AEF+CEF=AEC,
13、A+C+AEC=360,故错误;如图所示,过点P作PE/AB,AB/CD,AB/CD/PE,A=APE=180,C=CPE,又APC=APE=CPE,APC=A-C,故正确;如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,1=CEF,又AEF+CEF=AEC,180-A+1=AEC,故错误;,故正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐解析
14、:D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐标为,故选:D【点睛】本题考查了点的坐标规律探究,根基题意得出动点每移动六次为一个循环是解题的关键九、填空题9-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相反数,x+1=0,y-2=0,解得:x=-1,y=2,xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相反数,x+1=0,y
15、-2=0,解得:x=-1,y=2,xy=-12=-2故答案为:-2【点睛】本题考查了绝对值和平方数的非负性互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0十、填空题104【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键十一、
16、填空题115【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,C解析:5【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,CAD=90-30=60,AE是ABC的角平分线,BAC=130,CAE=BAC=130=65,DAE=CAE-CAD=65-60=5故答案为:5【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的
17、关键十二、填空题1240【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90D解析:40【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90DAE+CAB=180-DAC=901+2=902=90-1=40故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠
18、可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题148【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运
19、算法则是解本题的关键十五、填空题15或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐标为:或;故答案为:或解析:或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐标为:或;故答案为:或;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点十六、填空题16(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201
20、820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),“凸”形ABCDEFGHP的周长为20,201820的余数为18,细线另一端所在位置的点在P处,坐标为(1,0)故答案为:(1,0)【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型十七、解答题17(1)或 (2)【分析】(1)由平方根的定
21、义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛解析:(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案【详解】解:(1) ,是的平方根, 或 (2) 【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键十八、解答题18(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab的值代入原式计算即可求出值【详解】解:(1
22、)把解析:(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab的值代入原式计算即可求出值【详解】解:(1)把两边平方得:,把代入得:,;(2),=48【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键十九、解答题19对顶角相等;3;两直线平行,同位角相等;BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(解析:对顶角相等;3;两直线平行,同位角相等;BFD;AB;内错角相等,两直线平行;两直线平行,内错角相
23、等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(已知)又:13,(对顶角相等)23(等量代换)(同位角相等,两直线平行)ABFD(两直线平行,同位角相等)AD(已知)DBFD(等量代换)ABCD(内错角相等,两直线平行)BC(两直线平行,内错角相等)【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7
24、,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)E(5,7),点E到x轴的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式本题是综合题型,但难度不大二十一、解答题21(1)3;
25、(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(解析:(1)3;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数【详解】解:(1)34,的整数部分是3,小数部分是故答案为:3;(2)的小数部分a=2=的整数部分b=4=4=7;(3)的整数部分为2,小数部分为2=,其中x是正
26、整数,y=的相反数为【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键二十二、解答题22选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x
27、2=81,解得:x=9,x0,x=9,正方形的周长为49=36,设建成圆形时圆的半径为r米,由题意得:r2=81解得:,r0,圆的周长=,建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键二十三、解答题23(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据解析:(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPED
28、CP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得BAKAKE,DCKCKE,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BAKDCKAPC【详解】(1)如图1,过P作PEAB,ABCD,PEABCD,APEBAP,CPEDCP
29、,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFAB,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCAPC理由:如图3,过K作KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,APCBAPDCP,BAKBAP,DCKDCP,BAKDCKBAPDCP(BAPDCP)APC,AKC
30、APC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算二十四、解答题24(1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,解析:(1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,PBNCPB180,即有PAFPBNAPB360;(2)过P作PEAD交ON于E,根据平行线的性质,可得到,于是;分两种情况:当P在OB之间时;当P在OA的延长线上时,仿
31、照的方法即可解答【详解】解:(1)PAFPBNAPB360,理由如下:作PCEF,如图1,PCEF,EFMN,PCMN,PAFAPC180,PBNCPB180,PAFAPC+PBNCPB360,PAFPBNAPB360;(2), 理由如下:如答图,过P作PEAD交ON于E, ADBC,PEBC,当P在OB之间时,理由如下: 如备用图1,过P作PEAD交ON于E, ADBC,PEBC,;当P在OA的延长线上时,理由如下:如备用图2,过P作PEAD交ON于E, ADBC,PEBC,;综上所述,CPD,之间的数量关系是或.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互
32、补难点是分类讨论作平行辅助线二十五、解答题25(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,O
33、AG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,OF=GH-HF-OG=4-1-2=1结论:N+M=142.5,度数不变理由:如图2中,MF,MO分别平分AFO,AOF,M=180-(AFO+AOF)=180-(180-FAO)=90+FAO,NH,NG分别平分DHG,BGH,N=180-(DHG+BGH)=180-(HAG+AGH+HAG+AHG)=180-(180+HAG)=90-HAG=90-(30+FAO+45)=52.5-FAO,M+N=142.5【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用FAO表示出M,N