1、2023年人教版七7年级下册数学期末试题(含解析)一、选择题1如图,和不是同位角的是( )ABCD2下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在平面直角坐标系中,点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中属假命题的是()A两直线平行,内错角相等Ba,b,c是直线,若ab,bc,则acCa,b,c是直线,若ab,bc,则acD无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则1+2的度数为( )A120B110C100D906下列运算正确
2、的是( )ABCD7如图,直线AB,CD被BC所截,若ABCD,150,240,则3等于( )A80B70C90D1008如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,1),那么点A23的坐标是()A(7,1)B(8,1)C(7,1)D(8,1)九、填空题9若,则=_十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11如图,已知ABC是锐角三角形,BE、CF分别为ABC与ACB的角平分线,BE、CF相交于点O,若A=50,则B
3、OC=_.十二、填空题12如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DEBC交直线AC于点E,过点E作EFAB交直线BC于点F,若ABC50,则DEF的度数_十三、填空题13如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C的位置若EFB72,则AED_十四、填空题14规定一种关于、的新运算:,那么_十五、填空题15已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 _十六、填空题16在平面直角坐标系中,已知点,且,下列结论:轴,将点A先向右平移5个单位,再向下平移个单位可得到点;若点在直线上,则点的横坐标为3;三角形的
4、面积为,其中正确的结论是_(填序号)十七、解答题17计算:(1) (2)十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19完成下面的证明:如图,点、分别是三角形的边、上的点,连接,连接交于点,求证:证明:(已知)(_)又(已知)(_)(_)(_)二十、解答题20在平面坐标系中描出下列各点且标该点字母:(1)点,;(2)点在轴上,位于原点右侧,距离原点2个单位长度;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度二十一、解答题21已知某正数的两个平方根分别是和的立方根是是的整数部分(1)求的值;(2)求的算术平方根二十二、解答题22如图,
5、用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由二十三、解答题23如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时
6、AD与AC之间的位置关系二十四、解答题24已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数二十五、解答题25直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,
7、试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.【参考答案】一、选择题1C解析:C【分析】根据同位角定义可得答案【详解】解:A、1和2是同位角,故此选项不符合题意;B、1和2是同位角,故此选项不符合题意;C、1和2不是同位角,故此选项符合题意;D、1和2是同位角,故此选项不符合题意;故选C【点睛】本题考查同位角的概念解题的
8、关键是掌握同位角的概念,是需要熟记的内容即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面
9、内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3B【分析】根据各象限内点的坐标特征解答即可【详解】解:点A(-3,2)在第二象限,故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上
10、的点与实数一一对应对D进行判断【详解】解:A、两直线平行,内错角相等,所以A选项为真命题;B、a,b,c是直线,若ab,bc,则ac,所以B选项为假命题;C、a,b,c是直线,若ab,bc,则ab,所以C选项为真命题;D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题故选:B【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可5D【分析】过E作EFCD,根据平行线的性质可得1=BEF,2=DEF, 再由BED=90即可解答【详解】解:过E作EFCD,ABCD,EFCDAB,1=BEF,2=DEF,BEF+DEF=BED=90,1+
11、2=90,故选:D【点睛】本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键6C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键7C【分析】根据ABCD判断出1=C=50,根据3是ECD的外角,判断出3=C+2,从而求出3的度数【详解】解:ABCD,1=C=50,3是ECD的外角,3=C+2,3=50+40=90故选:C【点睛】本题
12、考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键8D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐解析:D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐标为,故选:D【点睛】本题考查了点的坐标规律探究,根基题意得出动点每移动六次为一个循环是解题的关键九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动
13、(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题
14、【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键十一、填空题11115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB解析:115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB)= 130=65,在OBC中,BOC=180(OBC+O
15、CB)=18065=115十二、填空题12130【分析】先求出ABCADE50,再求出DEF18050130即可【详解】解:DEBC,ABCADE50(两直线平行,同位角相等),E解析:130【分析】先求出ABCADE50,再求出DEF18050130即可【详解】解:DEBC,ABCADE50(两直线平行,同位角相等),EFAB,ADE+DEF180(两直线平行,同旁内角互补),DEF18050130故答案为:130【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键十三、填空题1336【分析】根据平行线的性质可知DEFEFB72,由折叠的性质求出DEF72,然后可求AED的
16、值【详解】解:四边形ABCD为长方形,AD/BC,DEF解析:36【分析】根据平行线的性质可知DEFEFB72,由折叠的性质求出DEF72,然后可求AED的值【详解】解:四边形ABCD为长方形,AD/BC,DEFEFB72,又由折叠的性质可得DEFDEF72,AED180727236,故答案为:36【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键十四、填空题14【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.解析:【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答
17、案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.十五、填空题15或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解
18、十六、填空题16【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断解析:【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断【详解】解:A(-2,4),B(3,4),它们的纵坐标相同,AB /x轴,故正确;将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),故错误;B(3,4),C(3,m),它们的横坐标相同,BC x轴,点 D 在直线B
19、C上,点 D的横坐标为 3,故正确;点A(-2,4),B(3, 4),C(3,m),且m4,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键二十三、解答题23(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCA
20、D,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键二十四、解答题24(1)15;150;(2)6
21、7.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故
22、答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或
23、120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十五、解答题25(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到解析:(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形
24、的外角的性质得到PAB+ABM270,根据角平分线的定义得到BACPAB,ABCABM,于是得到结论;(2)由于将ABC沿直线AB折叠,若点C落在直线PQ上,得到CABBAQ,由角平分线的定义得到PACCAB,即可得到结论;根据将ABC沿直线AB折叠,若点C落在直线MN上,得到ABCABN,由于BC平分ABM,得到ABCMBC,于是得到结论;(3)由BAO与BOQ的角平分线相交于E可得出E与ABO的关系,由AE、AF分别是BAO和OAG的角平分线可知EAF90,在AEF中,由一个角是另一个角的倍分情况进行分类讨论即可【详解】解:(1)ACB的大小不变,直线MN与直线PQ垂直相交于O,AOB90
25、,OAB+OBA90,PAB+ABM270,AC、BC分别是BAP和ABM角的平分线,BACPAB,ABCABM, BAC+ABC(PAB+ABM)135,ACB45;(2)将ABC沿直线AB折叠,若点C落在直线PQ上,CABBAQ,AC平分PAB,PACCAB,PACCABBAO60,AOB90,ABO30,将ABC沿直线AB折叠,若点C落在直线MN上,ABCABN,BC平分ABM,ABCMBC,MBCABCABN,ABO60,故答案为:30,60;(3)AE、AF分别是BAO与GAO的平分线,EAOBAO,FAOGAO,EEOQEAO(BOQBAO)ABO,AE、AF分别是BAO和OAG的角平分线,EAFEAO+FAO(BAO+GAO)90在AEF中,BAO与BOQ的角平分线相交于E,EAO= BAO,EOQ=BOQ, E=EOQ-EAO=(BOQ-BAO)=ABO,有一个角是另一个角的倍,故有:EAFF,E30,ABO60;FE,E36,ABO72;EAFE,E60,ABO120(舍去);EF,E54,ABO108(舍去);ABO为60或72【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想