资源描述
人教版七7年级下册数学期末学业水平题含解析
一、选择题
1.如图所示,下列说法正确的是( )
A.和是内错角 B.和是同旁内角
C.和是同位角 D.和是内错角
2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
3.在平面直角坐标系中有四个点,,,.其中在第一象限的点是( ).
A. B. C. D.
4.命题:①对顶角相等;②同旁内角互补;③如果两条直线垂直于同一条直线,那么这两条直线互相平行;④过一点有且只有一条直线与已知直线平行;⑤平行于同一条直线的两条直线互相平行.其中是真命题的有( )
A.5个 B.4个 C.3个 D.2个
5.直线,,,,则( )
A.15° B.25° C.35 D.20°
6.下列算式,正确的是( )
A. B. C. D.
7.如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( )
A. B. C. D.
8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,……按这样的运动规律,经过第次运动后,动点的坐标是( )
A. B. C. D.
九、填空题
9.如果,的平方根是,则__________.
十、填空题
10.点P(﹣2,3)关于x轴的对称点的坐标是_____.
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°.
十三、填空题
13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______.
十四、填空题
14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.
十五、填空题
15.已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为____.
十六、填空题
16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.
十七、解答题
17.计算:
(1);
(2).
十八、解答题
18.求下列各式中的x值:
(1)
(2)
十九、解答题
19.阅读并完成下列的推理过程.
如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知∠AFE=∠CDF,∠BCD+∠DEF=180°.证明BC∥DE;
证明:∵∠AFE=∠CDF(已知)
∴EF∥CD ( )
∴∠DEF=∠CDE( )
∵∠BCD+∠DEF=180°( )
∴ ( )
∴BC∥DE( )
二十、解答题
20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,
(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;
(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.
二十一、解答题
21.任意无理数都是由整数部分和小数部分构成的.
已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为.例如:,即,显然的整数部分是2,小数部分是.
根据上面的材料,解决下列问题:
(1)若的整数部分是m,的整数部分是n,求的值.
(2)若的整数部分是,小数部分是y,求的值.
二十二、解答题
22.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
二十三、解答题
23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
二十四、解答题
24.综合与探究(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;
(问题迁移)
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.
①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
二十五、解答题
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
【参考答案】
一、选择题
1.B
解析:B
【分析】
利用“三线八角”的定义分别判断后即可确定正确的选项.
【详解】
解:A、∠1和∠2是同旁内角,故错误;
B、∠1和∠2是同旁内角,正确;
C、∠1和∠5不是同位角,故错误;
D、∠1和∠4不是同旁内角,故错误,
故选:B.
【点睛】
本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.
2.B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
解析:B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
【点睛】
本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.
3.A
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:在第一象限;
在第二象限;
在第三象限;
在第四象限;
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
4.D
【分析】
根据对顶角的概念、平行线的性质、平行公理、平行线的判定定理判断即可.
【详解】
解:①对顶角相等,①是真命题,故①正确;
②两直线平行,同旁内角互补,②是假命题,故②错误;
③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线互相平行,③是假命题,故③是错误;
④过直线外一点有且只有一条直线与已知直线平行,④是假命题,故④错误;
⑤平行于同一条直线的两条直线互相平行,⑤是真命题,故⑤正确;
综上所述,真命题有①⑤,有2个.
故选:D.
【点睛】
本题主要考查了对顶角的概念、平行线的性质、平行公理、平行线的判定定理,解题的关键是熟练掌握相关知识点.
5.A
【分析】
分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成.
【详解】
分别过A、B作直线∥AD、∥BC,如图所示,则AD∥BC
∵∥
∴∥BC
∴∠CBF=∠2
∵∥AD
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
6.A
【分析】
根据平方根、立方根及算术平方根的概念逐一计算即可得答案.
【详解】
A.,计算正确,故该选项符合题意,
B.,故该选项计算错误,不符合题意,
C.,故该选项计算错误,不符合题意,
D.,故该选项计算错误,不符合题意,
故选:A.
【点睛】
本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.
7.A
【分析】
根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.
【详解】
解:由题意可得:∠A=60°,∠CBF=20°,,
∵,
∴∠A+∠ABF=180°,
∴∠ABF=180°﹣∠A
=180°﹣60°
=120°,
∴∠ABC=∠ABF﹣∠CBF
=120°﹣20°
=100°,
故选:A.
【点睛】
本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.
8.B
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,
所以,前505次循环运动点P共向右运
解析:B
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,
所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,
故点P坐标为(2020,0).
故选:B.
【点睛】
本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.
九、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
十、填空题
10.(﹣2,﹣3)
【分析】
两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.
【详解】
点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,
∴对称点的坐标是(﹣2,﹣3).
故答案为
解析:(﹣2,﹣3)
【分析】
两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.
【详解】
点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,
∴对称点的坐标是(﹣2,﹣3).
故答案为(﹣2,﹣3).
【点睛】
本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.
十一、填空题
11.【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠B
解析:
【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠BAE=26°,
∵DB是△ABC的高,
∴∠AFD=90°−∠FAD=90°−26°=64°,
∴∠BFE=∠AFD=64°.
故答案为64°.
【点睛】
本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.
十二、填空题
12.33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠C
解析:33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠CAD=24°,
∴∠BAC=66°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=33°,
∵AB∥DE,
∴∠E=∠BAE=33°,
故答案为33.
【点睛】
本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.
十三、填空题
13.【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性
解析:
【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.
十四、填空题
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的最大整数,
∴N=2,
∴M+N的平方根为:±=±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
十五、填空题
15.(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数
解析:(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,
又因为点P到x轴的距离为2,到y轴的距离为5,
所以点P的横坐标为5,纵坐标为2,
所以点P的坐标为(5,2),
故答案为(5,2).
【点睛】
此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键.
十六、填空题
16.(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4
解析:(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,
【详解】
解:由题意,粒子运动到点(3,0)时经过了15秒,
设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an,
则a1=2,a2=6,a3=12,a4=20,…,
a2-a1=2×2,
a3-a2=2×3,
a4-a3=2×4,
…,
an-an-1=2n,
各式相加得:
an-a1=2(2+3+4+…+n)=n2+n-2,
∴an=n(n+1).
∵44×45=1980,故运动了1980秒时它到点A44(44,44);
又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动.
故达到A44(44,44)时向左运动34秒到达点(10,44),
即运动了2014秒.所求点应为(10,44).
故答案为:(10,44).
故答案为:15,(10,44).
【点睛】
本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.
十七、解答题
17.(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点
解析:(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点睛】
本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.
十八、解答题
18.(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴
解析:(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴,
解得:x=8或x=-4.
【点睛】
本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.
十九、解答题
19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.
【分析】
根据平行线的性质与判定填空即可
【详解】
证明:∵∠AFE=∠CD
解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.
【分析】
根据平行线的性质与判定填空即可
【详解】
证明:∵∠AFE=∠CDF(已知)
∴EF∥CD (同位角相等,两直线平行)
∴∠DEF=∠CDE( 两直线平行,内错角相等)
∵∠BCD+∠DEF=180°(已知)
∴∠BCD+∠CDE=180°( 等量代换)
∴BC∥DE( 同旁内角互补,两直线平行)
故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(
解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(2)分别作出A′,B′,C′即可解决问题.
【详解】
解:(1)平面直角坐标系如图所示:B(0,1).
(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是
解析:(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是3,即m=3,
∵,
∴,
∴的整数部分是2,即n=2,
∴==0;
(2)∵,
∴,
∴的整数部分是10,即2x=10,
∴x=5,
∴的小数部分是=,
即y=,
∴==.
【点睛】
本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
二十四、解答题
24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠
解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;
(2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是;
②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答.
【详解】
解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:
作PC∥EF,如图1,
∵PC∥EF,EF∥MN,
∴PC∥MN,
∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,
∴∠PAF+∠APC+∠PBN+∠CPB=360°,
∴∠PAF+∠PBN+∠APB=360°;
(2)①,
理由如下:如答图,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴
②当P在OB之间时,,理由如下:
如备用图1,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
当P在OA的延长线上时,,理由如下:
如备用图2,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
综上所述,∠CPD,∠α,∠β之间的数量关系是或.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.
二十五、解答题
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.
理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-(∠DHG+∠BGH)
=180°-(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-(180°+∠HAG)
=90°-∠HAG
=90°-(30°+∠FAO+45°)
=52.5°-∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.
展开阅读全文