资源描述
人教版八年级上册压轴题数学质量检测试题答案
1.在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足.
(1)求A、B两点的坐标;
(2)如图(1),点C为x轴负半轴一动点,,于D,交y轴于点E,求证:平分.
(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.
2.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.
(1)求点的坐标;
(2)求证:;
(3)如图2,点在线段上,作轴于点,交于点,若,求证:.
3.请按照研究问题的步骤依次完成任务.
【问题背景】
(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D.
【简单应用】
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)
【问题探究】
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ;
【拓展延伸】
(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ;
(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 .
4.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)点P在直线AB的右侧;且∠APB=45°,
①若点P在x轴上(图1),则点P的坐标为 ;
②若△ABP为直角三角形,求P点的坐标.
5.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.
(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE;
(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.
6.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点.
(1)若+b2-10b+25=0,判断△AOB的形状,并说明理由;
(2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长;
(3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围.
7.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
【参考答案】
2.(1),;(2)证明见解析;(3)不变化,.
【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;
(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;
(3)由于点F是等
解析:(1),;(2)证明见解析;(3)不变化,.
【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;
(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;
(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BF.∠BFO=∠GFH,进而得出∠OFH=∠BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可.
【详解】解:(1)∵
∴,
∴ ,即.
∴,.
(2)如图,过点O作于M,于N,
根据题意可知.
∵,
∴,
∴.
∵,,
∴OA=OB=6.
在和中, ,
∴.
∴, ,.
∴,
∴,
∴点O一定在∠CDB的角平分线上,
即OD平分∠CDB.
(3)如图,连接OF,
∵是等腰直角三角形且点F为AB的中点,
∴,,OF平分∠AOB.
∴.
又∵,
∴,
∴.
∵,
∴.
又∵,
∴.
在和中 ,
∴.
∴,
∴.
故不发生变化,且.
【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题.
3.(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直
解析:(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;
(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.
【详解】解:(1)∵a2-2ab+2b2-16b+64=0,
∴(a-b)2+(b-8)2=0,
∴a=b=8,
∴b-6=2,
∴点C(2,-8);
(2)∵a=b=8,
∴点A(0,6),点B(8,0),点C(2,-8),
∴AO=6,OB=8,
如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,
∴四边形AOBP是矩形,
∴AO=BP=6,AP=OB=8,
∵点B(8,0),点C(2-8),
∴CQ=6,BQ=8,
∴AP=BQ,CQ=BP,
又∠APB=∠BCQ
∴△ABP≌△BCQ(SAS),
∴AB=BC,∠BAP=∠CBQ,
∵∠BAP+∠ABP=90°,
∴∠ABP+∠CBQ=90°,
∴∠ABC=90°,
∴△ABC是等腰直角三角形,
∴∠BAC=45°,
∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,
∴∠OAC+∠ABO=45°;
(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,
∴∠TAE=90°=∠AGE,
∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,
∴∠ATO=∠GAE,∠TAO=∠AEG,
又∵EG=AO,
∴△ATO≌△EAG(AAS),
∴AT=AE,OT=AG,
∵∠BAC=45°,
∴∠TAD=∠EAD=45°,
又∵AD=AD,
∴△TAD≌△EAD(SAS),
∴TD=ED,∠TDA=∠EDA,
∵EG⊥AG,
∴EG∥OB,
∴∠EFD=∠TDA,
∴∠EFD=∠EDF,
∴EF=ED,
∴EF=ED=TD=OT+OD=AG+OD,
∴EF=AG+OD.
【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
4.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方
解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;
(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;
(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=.
【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的结论得:,
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,
∴∠P=(∠B+∠D)=23°;
(3)解:如图3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案为:26°;
(4)由题意可得:∠B+∠CAB=∠C+∠BDC,
即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,
∠B+∠BAP=∠P+∠PDB,
即y+∠BAP=∠P+∠PDB,
即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),
即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),
∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB
= y+(∠CAB-∠CDB)
=y+(x-y)
=
故答案为:∠P=;
(5)由题意可得:∠B+∠BAD=∠D+∠BCD,
∠DAP+∠P=∠PCD+∠D,
∴∠B-∠D=∠BCD-∠BAD,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠BAP=∠DAP,∠PCE=∠PCB,
∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,
∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,
∴∠P=90°+∠BCD-∠BAD +∠D
=90°+(∠BCD-∠BAD)+∠D
=90°+(∠B-∠D)+∠D
=,
故答案为:∠P=.
【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.
5.(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:
解析:(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.
【详解】(1)∵a2+4a+4+b2﹣8b+16=0
∴(a+2)2+(b﹣4)2=0
∴a=﹣2,b=4.
(2)①如图1中,
∵∠APB=45°,∠POB=90°,
∴OP=OB=4,
∴P(4,0).
故答案为(4,0).
②∵a=﹣2,b=4
∴OA=2OB=4
又∵△ABP为直角三角形,∠APB=45°
∴只有两种情况,∠ABP=90°或∠BAP=90°
①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.
∴∠PCB=∠BOA=90°,
又∵∠APB=45°,
∴∠BAP=∠APB=45°,
∴BA=BP,
又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,
∴∠ABO=∠BPC,
∴△ABO≌△BPC(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=4﹣2=2,
∴P(4,2).
②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.
∴∠PDA=∠AOB=90°,
又∵∠APB=45°,
∴∠ABP=∠APB=45°,
∴AP=AB,
又∵∠BAD+∠DAP=90°,
∠DPA+∠DAP=90°,
∴∠BAD=∠DPA,
∴△BAO≌△APP(AAS),
∴PD=OA=2,AD=OB=4,
∴OD=AD﹣0A=4﹣2=2,
∴P(2,﹣2).
综上述,P点坐标为(4,2),(2,﹣2).
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.
6.(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易
解析:(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2.
(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);
(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.
【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
7.(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)
解析:(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度;
(3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长.
(1)
解:结论:△OAB是等腰直角三角形;理由如下:
∵+b2-10b+25=0,即,
∴,解得:,
∴A(−5,0),B(0,5),
∴OA=OB=5,
∴△AOB是等腰直角三角形.
(2)
解:∵AM⊥OQ,BN⊥OQ,
∴,
,
∴,
∴,
∵在△AMO与△ONB中,
∴△AMO≌△ONB(AAS),
∴AM=ON=4,BN=OM,
∵MN=7,
∴OM=3,
∴BN=OM=3.
(3)
解:结论:PB的长为定值.理由如下,
作EK⊥y轴于K点,如图所示:
∵△ABE为等腰直角三角形,
∴AB=BE,∠ABE=90°,
∴∠EBK+∠ABO=90°,
∵∠EBK+∠BEK=90°,
∴∠ABO=∠BEK,
∵在△AOB和△BKE中,
∴△AOB≌△BKE(AAS),
∴OA=BK,EK=OB,
∵△OBF为等腰直角三角形,
∴OB=BF,
∴EK=BF,
∵在△EKP和△FBP中,
∴△PBF≌△PKE(AAS),
∴PK=PB,
∴PB=BK=OA=.
【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.
8.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
9.(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明
解析:(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得
(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.
【详解】(1)∵点在x轴负半轴上,
∴,,
∵,,
∴,
∵,
∴,
∴,
如答图1,在x轴的正半轴上取点C,使,连接BC,
∵,
∴,
又∵,
∴,
∴,
∴是等边三角形,
∴;
(2)如答图2,连接BM,
∴是等边三角形,
∵,,
∵∠,
∴,
∴,
∵D为AB的中点,
∴,
∵,
∴,
∴,在和中,
∴,
∴,即,
∴,
∴为等边三角形,
∴,∴;
(3)如答图3,过点F作轴交CB的延长线于点N,
则,
∵,
∴,
在和中,
∴,
∴,,
∵,
∴,
又∵E是OC的中点,设,
∴等边三角形ABC的边长是4a,,
∵,
∴,
在和中,
∴,
∴,
又∵,
∴,
,
∴.
【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
展开阅读全文