资源描述
八年级上学期压轴题模拟数学试卷含解析(一)
1.等边中,点、分别在边、上,且,连接、交于点.
(1)如图1,求的度数;
图1
(2)连接,若,求的值;
(3)如图2,若点为边的中点,连接,且,则的大小是___________.
图2
2.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限.
(1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________;
(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;
(3)试探究(2)中OD,OE与DF之间的关系,并说明理由.
3.已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
4.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.
(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;
(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).
5.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
6.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
7.如图,等边中,点在上,延长到,使,连,过点作与点.
(1)如图1,若点是中点,
求证:①;②.
(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;
(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论.
8.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA⊥BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E.
(1)填空:点B的坐标是 ;
(2)如图2,连接DE,过点C作CH⊥CA于C,交x轴于点H,求证:∠ADB=∠CDE;
(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连PO,过P作∠OPG=45°交BN于G.求证:点G是BN中点.
【参考答案】
2.(1);(2);(3)
【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出.
(2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在
解析:(1);(2);(3)
【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出.
(2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.
(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.
【详解】(1)∵是等边三角形,
∴,,
在和中,
,,,
∴,
∴,
∴,
∴.
(2)在上取点,使.
由(1)知,
又,
∴.
在和中,
∵,,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴.
(3).
提示:目测即得答案.详细理由如下:
由(1)知.延长至,使为等边三角形.
延长交于.
∵ ,
∴,
在和中,
,
∴,
∴.
∴,
∴.
∴,
在和中,
,
∴,
∴.
∵,,
∴,
∵
∴为等边三角形,
∴
∴.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.
3.(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证
解析:(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;
(3)证明得到,,又由(2)可知,进一步可得.
(1)
解:∵,即:,
∴,,
作轴交于点D,
∵,,
∴,
在和中,
∴,
∴,,
∴,即.
(2)
证明:∵,BE平分,
∴,,
在和中,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
在和中,
∴,
∴,即CG垂直平分EF.
(3)
解:,理由如下:
∵,
,
∴,
在和中,
∴,
∴,,
∵,
∴,
又由(2)可知,
∴,即.
【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.
4.(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明
解析:(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
5.(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B
解析:(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.
【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵ ,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△DMN与△DEN中,
∵ ,
∴△DMN≌△DEN(SAS),
∴MN=NE=CE+NC=BM+NC.
(2)如图②中,结论:MN=NC﹣BM.
理由:在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵ ,
∴△BMD≌△CED(SAS),
∴DM= DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△MDN和△EDN中
∵ ,
∴△MDN≌△EDN(SAS),
∴MN =NE=NC﹣CE=NC﹣BM.
【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
6.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
7.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
8.(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论
解析:(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论;
(3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论.
(1)
证明:如图
①∵为等边三角形,
∴,
又为中点,
∴ ,
∵,
∴ ,
∴,
∴;
②∵,
∴为等腰三角形,
∵,
∴.
(2)
仍然成立,理由如下:
如图,过点D作DM//BC交AC于M
∵为等边三角形,
∴,
∴,
∵,
∴,
∴,为等边三角形,
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
而,
∴.
(3)
的结论仍然成立,理由如下:如图为所求作图.
作交的延长线于,
易证为等边三角形,
,,
而,
∴,
∵,,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∵,
∴.
【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题.
9.(1)(0,6)
(2)见解析
(3)见解析
【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案;
(2)在
解析:(1)(0,6)
(2)见解析
(3)见解析
【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案;
(2)在BD上截取BF= AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案;
(3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了.
(1)
解:过点C作CG⊥x轴于G,如图所示:
∵C(3,﹣3),
∴CG=3,OG=3,
∵∠BOA=∠CGA=90°,
∴∠ABO+∠BAO=∠BAO+∠CAG=90°,
∴∠ABO=∠CAG,
又∵AB=AC,
∴△ABO≌△CAG(AAS),
∴AO=CG=3,OB=AG=AO+OG=6,
∴点B的坐标是(0,6).
(2)
证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF∥AO.
同(1)得:△ABO≌△CAG(AAS),
∴AO=CG=3,
∵CF=3,
∴AO=CF,
∵CF∥AO
∴∠DAO=∠DCF,∠AOD=∠CFD,
∴△AOD≌△CFD(ASA),
∴AD=CD,
∵CA⊥BA,CH⊥CA,
∴∠BAD=∠ACH=90°,
又∵∠ABO=∠CAG,AB=AC,
∴△BAD≌△ACH(ASA),
∴AD=CH,∠ADB=∠AHC
∴CD=CH,
∵BA=CA,
∴△ABC是等腰直角三角形,
∴∠ACB=45°,
∴∠HCE=90°﹣∠ACB=45°,
∴∠DCE=∠HCE=45°,
又∵CE=CE,
∴△DCE≌△HCE(SAS),
∴∠CDE=∠CHE,
∴∠ADB=∠CDE.
(3)
证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L.
则△OPK是等腰直角三角形,
∴∠OKP=∠OPK=45°,OK=OP,
∵PN=PF,
∴△PNF是等腰直角三角形,
∴∠PFN=∠PNF=45°,
∵PL⊥NF,
∴∠FPL=45°,
则∠OPF=∠OPL+45°,∠GPN=∠OPL=45°﹣∠MPO,
∵∠KOB+∠BOP=∠FOP+∠BOP=90°,
∴∠KOB=∠FOP,
又∵OB=OF=6,
∴△OKB≌△OPF(SAS),
∴KB=PF=PN,∠OKB=45°+∠GKB=∠OPF=∠OPL+45°,
∴∠GKB=∠OPL=∠GPN,
又∵∠KGB=∠PGN,
∴△KBG≌△PNG(SAS),
∴BG=NG,
即点G为BN的中点.
【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型.
展开阅读全文