资源描述
人教七年级下册数学期末解答题复习题附答案
一、解答题
1.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
2.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
3.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
4.有一块面积为100cm2的正方形纸片.
(1)该正方形纸片的边长为 cm(直接写出结果);
(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?
5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二、解答题
6.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
7.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
8.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
9.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= .
10.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.
(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;
(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;
(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系
三、解答题
11.如图1,点O在上,,射线交于点C,已知m,n满足:.
(1)试说明//的理由;
(2)如图2,平分,平分,直线、交于点E,则______;
(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论.
12.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.
(1)求证:EF∥MN;
(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;
(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.
13.课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,
∴∠B=∠EAB,∠C=
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
解题反思:
从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
14.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.
(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .
(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由.
(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.
15.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)①如图1,∠DPC= 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.
四、解答题
16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
17.如图,在中,是高,是角平分线,,.
()求、和的度数.
()若图形发生了变化,已知的两个角度数改为:当,,则__________.
当,时,则__________.
当,时,则__________.
当,时,则__________.
()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.
18.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分
(1)求的度数;
(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.
19.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.
(图1) (图2)
20.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、解答题
1.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
2.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
3.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
4.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算
解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;
故答案为:10;
(2)∵长方形纸片的长宽之比为4:3,
∴设长方形纸片的长为4xcm,则宽为3xcm,
则4x•3x=90,
∴12x2=90,
∴x2=,
解得:x=或x=-(负值不符合题意,舍去),
∴长方形纸片的长为2cm,
∵5<<6,
∴10<2,
∴小丽不能用这块纸片裁出符合要求的纸片.
【点睛】
本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
5.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二、解答题
6.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
7.(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图
解析:(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】
解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
8.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,
解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
9.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质
解析:(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
10.(1)65°;(2);(3)2n∠M+∠BED=360°
【分析】
(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+
解析:(1)65°;(2);(3)2n∠M+∠BED=360°
【分析】
(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数;
(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;
(3)由(2)的方法可得到2n∠M+∠BED=360°.
【详解】
解:(1)如图1,作,,连结,
,
,
,,,,
,
,
,
和的角平分线相交于,
,
,
、分别是和的角平分线,
,,
,
;
(2)如图1,,,
,,
与两个角的角平分线相交于点,
,,
,
,
,
;
(3)由(2)结论可得,,,
则.
【点睛】
本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
三、解答题
11.(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也
解析:(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数;
(3)不变,分三种情况讨论即可.
【详解】
(1)∵,,且
∴,
∴m=20,n=70
∴∠MOC=90゜-∠AOM=70゜
∴∠MOC=∠OCQ=70゜
∴MN∥PQ
(2)∵∠AON=180゜-∠AOM=160゜
又∵平分,平分
∴,
∵
∴
∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜
故答案为:45.
(3)不变,理由如下:
如图,当0゜<α<20゜时,
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠MOC=∠OCQ=2x
∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON
∴∠DON=45゜+x
∵∠MOE=∠DON=45゜+x
∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x
∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜
当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜
当20゜<α<90゜时,如图
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠NOC=180゜-∠OCQ=180゜-2x
∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON
∴∠AOE=135゜-x
∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜
∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜
综上所述,∠EOF的度数不变.
【点睛】
本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.
12.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K
解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;
(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;
(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.
【详解】
解:(1)∵AB⊥AK
∴∠BAC=90°
∴∠MAB+∠KAN=90°
∵∠MAB+∠KCF=90°
∴∠KAN=∠KCF
∴EF∥MN
(2)设∠KAN=∠KCF=α
则∠BAN=∠BAC+∠KAN=90°+α
∠KCB=180°-∠KCF=180°-α
∵AG平分∠NAB,CG平分∠ECK
∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α
∴∠FCG=∠KCG+∠KCF=90°+α
过点G作GH∥EF
∴∠HGC=∠FCG=90°+α
又∵MN∥EF
∴MN∥GH
∴∠HGA=∠GAN=45°+α
∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°
(3)①当CP交射线AQ于点T
∵
∴
又∵
∴
由(1)可得:EF∥MN
∴
∵
∴
∵,
∴
∴
即∠FCP+2∠ACP=180°
②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G
,由EF∥MN得
∴
又∵,,
∴
∵,
∴
∴
∴
由①可得
∴
∴
综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【点睛】
本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.
13.(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
解析:(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.
【详解】
解:(1)过点A作ED∥BC,
∴∠B=∠EAB,∠C=∠DCA,
又∵∠EAB+∠BAC+∠DAC=180°,
∴∠B+∠BAC+∠C=180°.
故答案为:∠DAC;
(2)过C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠D=∠FCD,
∵CF∥AB,
∴∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°;
(3)如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【点睛】
此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.
14.(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用
解析:(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论.
【详解】
(1)因为∥,
所以,
因为∠BCD=73 °,
所以,
故答案为:
(2),
如图②,过点作∥,
则,.
因为,
所以,
(3)不变,
设,
因为平分,
所以.
由(2)的结论可知,且,
则:.
因为∥,
所以,
因为平分,
所以.
因为∥,
所以,
所以.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.
15.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和
解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;
(2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD∥PC时,
∵PC∥BD,∠DBP=90°,
∴∠CPN=∠DBP=90°,
∵∠CPA=60°,
∴∠APN=30°,
∵转速为10°/秒,
∴旋转时间为3秒;
如图1﹣2,当PC∥BD时,
∵∠PBD=90°,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,
∵转速为10°/秒,
∴旋转时间为27秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,
∵转速为10°/秒,
∴旋转时间为6秒,
如图1﹣6,当时,
∴三角板PAC绕点P逆时针旋转的角度为
∵转速为10°/秒,
∴旋转时间为秒,
如图1﹣7,当AC∥BD时,
∵AC∥BD,
∴∠DBP=∠BAC=90°,
∴点A在MN上,
∴三角板PAC绕点P逆时针旋转的角度为180°,
∵转速为10°/秒,
∴旋转时间为18秒,
当时,如图1-3,1-4,旋转时间分别为:,
综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;
(2)如图,当在上方时,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.
∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
当在下方时,如图,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t.
∴∠CPD=
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
四、解答题
16.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠ED
展开阅读全文