收藏 分销(赏)

人教版中学七年级数学下册期末测试附答案.doc

上传人:a199****6536 文档编号:1896289 上传时间:2024-05-11 格式:DOC 页数:24 大小:639.04KB 下载积分:10 金币
下载 相关 举报
人教版中学七年级数学下册期末测试附答案.doc_第1页
第1页 / 共24页
人教版中学七年级数学下册期末测试附答案.doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
人教版中学七年级数学下册期末测试附答案 一、选择题 1.的平方根是() A. B. C. D. 2.在以下现象中,属于平移的是( ) ①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A.①② B.②④ C.②③ D.③④ 3.点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( ) A. B. C. D. 6.下列计算正确的是(  ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,将一张长方形纸片折叠,若,则的度数是( ) A.80° B.70° C.60° D.50° 8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五次运动到P5(5,2),第六次运动到P6(6,0),…,按这样的运动规律,点P2021的纵坐标是(  ) A.﹣2 B.0 C.1 D.2 九、填空题 9.若|y+6|+(x﹣2)2=0,则y x=_____. 十、填空题 10.点关于轴的对称点的坐标为,则的值是______. 十一、填空题 11.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____. 十二、填空题 12.如图,直线a∥b,直角三角形的直角顶点在直线b上,已知∠1=48°,则∠2的度数是___度. 十三、填空题 13.如图所示是一张长方形形状的纸条,,则的度数为__________. 十四、填空题 14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______ 十五、填空题 15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________. 十六、填空题 16.如图,点A(0,1),点(2,0),点(3,2),点(5,1)…,按照这样的规律下去,点的坐标为 _____. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的的值: (1); (2). 十九、解答题 19.完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H.已知,,对和说明理由. 理由:∵(已知), ( ), ∴(等量代换). ∴( ). ∵( ). ∵(已知), ∴.( ). ∴( ). 二十、解答题 20.如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为. (1)在图中画出平移后的三角形; (2)写出点的坐标; (3)三角形ABC的面积为 . 二十一、解答题 21.解下列问题: (1)已知;求的值. (2)已知的小数部分为的整数部分为,求的值. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H. (1)当点H在线段EG上时,如图1 ①当∠BEG=时,则∠HFG= . ②猜想并证明:∠BEG与∠HFG之间的数量关系. (2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系. 二十四、解答题 24.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 二十五、解答题 25.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作. 【详解】 解:的平方根是. 故选A. 【点睛】 本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根. 2.B 【分析】 平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答. 【详解】 解析:B 【分析】 平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答. 【详解】 ①在荡秋千的小朋友的运动,不是平移; ②坐观光电梯上升的过程,是平移; ③钟面上秒针的运动,不是平移; ④生产过程中传送带上的电视机的移动过程.是平移; 故选:B. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选. 3.C 【分析】 根据平面直角坐标系象限的符合特点可直接进行排除选项. 【详解】 解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限; 故选C. 【点睛】 本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键. 4.C 【分析】 根据命题的定义分别对各语句进行判断. 【详解】 解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题. 故选:C. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.D 【分析】 由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1. 【详解】 解:由题意得:AG∥BE∥CD,CF∥BD, ∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180° ∴∠CFB=∠CDB ∴∠CAG=∠CDB 由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180° ∴∠CAG=∠CDB=∠1+∠BAG=2α ∴∠2=180°-2∠BDC=180°-4α 故选D. 【点睛】 本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.A 【分析】 先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案. 【详解】 解:如图, 由折叠性质知∠4=∠2=50°, ∴∠3=180°-∠4-∠2=80°, ∵AB∥CD, ∴∠1=∠3=80°, 故选:A. 【点睛】 本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质. 8.D 【分析】 观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到 解析:D 【分析】 观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,分别得出点P运动的纵坐标的规律,再根据循环规律可得答案. 【详解】 解:观察图象,结合动点P第一次从原点O运动到点P1(1,1), 第二次运动到点P2(2,0), 第三次运动到P3(3,-2), 第四次运动到P4(4,0), 第五运动到P5(5,2), 第六次运动到P6(6,0), …, 结合运动后的点的坐标特点, 可知由图象可得纵坐标每6次运动组成一个循环:1,0,-2,0,2,0; ∵2021÷6=336…5, ∴经过第2021次运动后,动点P的纵坐标是2, 故选:D. 【点睛】 本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 九、填空题 9.36 【解析】由题意得,y+6=0,x﹣2=0, 解得x=2,y=﹣6, 所以,yx=(﹣6)2=36. 故答案是:36. 解析:36 【解析】由题意得,y+6=0,x﹣2=0, 解得x=2,y=﹣6, 所以,yx=(﹣6)2=36. 故答案是:36. 十、填空题 10.4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐 解析:4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键. 十一、填空题 11.4 【分析】 根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案. 【详解】 解:过点P作MN⊥AD, ∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A 解析:4 【分析】 根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案. 【详解】 解:过点P作MN⊥AD, ∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC, ∴PM=PE=2,PE=PN=2, ∴MN=2+2=4. 故答案为4. 十二、填空题 12.42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点 解析:42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点睛】 本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 十三、填空题 13.5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3= 解析:5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3=180°-105°=75°, ∴∠2=(180°-75°)÷2=52.5°, 故答案为:52.5°. 【点睛】 此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的. 十四、填空题 14.. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索, 解析:. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索,解题的关键是根据题意发现规律. 十五、填空题 15.【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正 解析: 【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正确建立坐标系. 十六、填空题 16.(1500,501). 【分析】 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点 解析:(1500,501). 【分析】 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点(3,2),(6,3),(9,4),…,(3n,n+1), ∵1000是偶数,且1000=2n, ∴n=500, ∴(1500,501), 故答案为:(1500,501). 【点睛】 本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键. 十七、解答题 17.(1);(2)-5. 【分析】 (1)直接利用算术平方根以及立方根的定义化简得出答案; (2)直接利用算术平方根以及立方根的定义化简得出答案. 【详解】 (1) =1+-2 = (2) =3-4+ 解析:(1);(2)-5. 【分析】 (1)直接利用算术平方根以及立方根的定义化简得出答案; (2)直接利用算术平方根以及立方根的定义化简得出答案. 【详解】 (1) =1+-2 = (2) =3-4+1-5 =-5 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , 解析:(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , ; (2), , , 解得:. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 十九、解答题 19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直 解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD. 【详解】 证明:∵∠1=∠2(已知) ∠1=∠AGH(对顶角相等) ∴∠2=∠AGH(等量代换) ∴AD∥BC(同位角相等,两直线平行) ∴∠ADE=∠C(两直线平行,同位角相等) ∵∠A=∠C(已知) ∴∠ADE=∠A ∴AB∥CD(内错角相等,两直线平行). 【点睛】 本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系. 二十、解答题 20.(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面 解析:(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可. 【详解】 (1)如图所示,三角形即为所求; (2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1); (3)三角形ABC的面积为:4×5-×2×4-×1×3-×3×5=7. 【点睛】 本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 二十一、解答题 21.(1);(2). 【分析】 (1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a,b的值,进而得出答案. 【详解】 原式 . 解析:(1);(2). 【分析】 (1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a,b的值,进而得出答案. 【详解】 原式 . 【点睛】 此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. 解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可. 【详解】 解:(1)①∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°, ∵∠BEG=36°, ∴∠HFG=18°. 故答案为:18°. ②结论:2∠BEG+∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°. (2)如图2中,结论:2∠BEG-∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°-∠HFG=180°, ∴2∠BEG-∠HFG=90°. 【点睛】 本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十四、解答题 24.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)60°;(2)15°;(3)30°或15° 【分析】 (1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得 解析:(1)60°;(2)15°;(3)30°或15° 【分析】 (1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得出结论. 【详解】 解:(1), , , , , ; (2)由(1)知,, , , , ; (3)当时,如图3, 由(1)知,, ; 当时,如图4, , 点,重合, , , 由(1)知,, , 即当以、、为顶点的三角形是直角三角形时,度数为或. 【点睛】 此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服