资源描述
人教版中学七年级下册数学期末质量监测卷及解析
一、选择题
1.如图所示,下列说法正确的是( )
A.与是内错角 B.与是同位角
C.与是同旁内角 D.与是内错角
2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
3.在平面直角坐标系中,点(-1,-3)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,假命题是( )
A.对顶角相等
B.两直线平行,内错角相等
C.在同一平面内,垂直于同一直线的两直线平行
D.过一点有且只有一条直线与已知直线平行
5.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为( )
A.22° B.22.5° C.30° D.45°
6.下列命题正确的是( )
A.若a>b,b<c,则a>c B.若a∥b,b∥c,则a∥c
C.49的平方根是7 D.负数没有立方根
7.如图,中,,,将边绕点按逆时针旋转一周回到原来位置,在旋转过程中,当时,求边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是( )
A.嘉嘉的结果正确 B.琪琪的结果正确
C.两个人的结果合在一起才正确 D.两个人的结果合在一起也不正确
8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.已知,则a+b为_____.
十、填空题
10.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_____.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°.
十三、填空题
13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________.
十四、填空题
14.已知,若且是整数,则m=______ .
十五、填空题
15.已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_______________.
十六、填空题
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
十七、解答题
17.(1)计算:
(2)计算:
(3)已知,求的值.
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H.已知,,对和说明理由.
理由:∵(已知),
( ),
∴(等量代换).
∴( ).
∵( ).
∵(已知),
∴.( ).
∴( ).
二十、解答题
20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 .
(1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 .
(2)求 的面积.
(3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 .
二十一、解答题
21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题;
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ;
(2)x是的小数部分,y是的整数部分,求x= ,y= ;
(3)求的平方根.
二十二、解答题
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.已知:和同一平面内的点.
(1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;
(2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由.
(3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形.
二十五、解答题
25.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角,同旁内角,内错角的定义可以得到结果.
【详解】
解:A、与不是内错角,故错误;
B、与是邻补角,故错误;
C、与是同旁内角,故正确;
D、与是同位角,故错误;
故选C.
【点睛】
本题主要考查了同位角,内错角,同旁内角的概念,比较简单.
2.B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
解析:B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
【点睛】
本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.
3.C
【分析】
根据平面直角坐标系中象限内点的特征判断即可;
【详解】
∵,,
∴点(-1,-3)位于第三象限;
故选C.
【点睛】
本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键.
4.D
【分析】
根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.
【详解】
解:A、对顶角相等,是真命题,故不符合题意;
B、两直线平行,内错角相等,是真命题,故不符合题意;
C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;
D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;
故选D.
【点睛】
本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.
5.B
【分析】
过作,过作,利用平行线的性质解答即可.
【详解】
解:过作,过作,
,
,
,,
,,
,,,
,
.
故选:B.
【点睛】
此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.
6.B
【解析】
【分析】
根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.
【详解】
选项A,由a>b,b>c,则a>c,可得选项A错误;
选项B, 若a∥b,b∥c,则a∥c,正确;
选项C,由49的平方根是±7,可得选项C错误;
选项D,由负数有立方根,可得选项D错误;
故选B.
【点睛】
本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.
7.C
【分析】
分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.
【详解】
解:当点在点的右边时,如下图:
为旋转的角度,
∵
∴,即旋转角为
当点在点的左边时,如下图:
∵
∴
根据三角形内角和可得
旋转的角度为
综上所述,旋转角度为或
故选C
【点睛】
此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.
8.D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算
解析:D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算是解题的关键.
九、填空题
9.-6
【解析】
试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6.
考点:非负数的性质:算术平方根;非负数的性质:绝对值.
点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数
解析:-6
【解析】
试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6.
考点:非负数的性质:算术平方根;非负数的性质:绝对值.
点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
十、填空题
10.(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标
解析:(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.
【详解】
解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),
故答案为(2,﹣1).
【点睛】
熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠C
解析:33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠CAD=24°,
∴∠BAC=66°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=33°,
∵AB∥DE,
∴∠E=∠BAE=33°,
故答案为33.
【点睛】
本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.
十三、填空题
13.2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长
解析:2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,
∴△ABD与△ACD的周长之差=6-4=2cm,
故答案为:2cm.
【点睛】
本题考查了翻折变换,掌握折叠的性质是本题关键.
十四、填空题
14.2
【分析】
根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.
【详解】
解:∵是整数,
∴m是整数,
∵,
∴m2≤4,
∴−2≤m≤2,
∴m=−2,−1
解析:2
【分析】
根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.
【详解】
解:∵是整数,
∴m是整数,
∵,
∴m2≤4,
∴−2≤m≤2,
∴m=−2,−1,0,1,2
当m=±2或−1时,是整数,
∵
∴m=2
故答案为:2.
【点睛】
本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型.
十五、填空题
15.(2,2)或(4,-4).
【分析】
点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标.
【详解】
解:∵点P到两坐标轴的距离相等
∴=
∴
解析:(2,2)或(4,-4).
【分析】
点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标.
【详解】
解:∵点P到两坐标轴的距离相等
∴=
∴3a-1=3-a或3a-1=-(3-a)
解得a=1或a=-1
当a=1时,3-a=2,3a-1=2;
当a=-1时,3-a=4,3a-1=-4
∴点P的坐标为(2,2)或(4,-4).
故答案为(2,2)或(4,-4).
【点睛】
本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
十六、填空题
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
十七、解答题
17.(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
解析:(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
(3)直接利用平方根的定义计算得出答案.
【详解】
解:(1)
,
;
(2)
,
,
;
(3)∵
∴
解得:或.
故答案为:(1)2;(2)6;(3) 或
【点睛】
本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.
【分析】
先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直
解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.
【分析】
先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD.
【详解】
证明:∵∠1=∠2(已知)
∠1=∠AGH(对顶角相等)
∴∠2=∠AGH(等量代换)
∴AD∥BC(同位角相等,两直线平行)
∴∠ADE=∠C(两直线平行,同位角相等)
∵∠A=∠C(已知)
∴∠ADE=∠A
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
二十、解答题
20.(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点
解析:(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 ,
所以 ,求解即可.
【详解】
解:(1) 如图, 为所作.
(0,3),(4,0);
(2) 计算 的面积 .
(3)设P点得坐标为(t,0),
因为以 ,, 为顶点得三角形得面积为 ,
所以 ,解得 或 ,
即 点坐标为 (3,0) 或(5,0).
【点睛】
本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(
解析:(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(2),
,,
的小数部分为:,
的整数部分为:3;
故答案是:;
(3),
,
的平方根为:.
【点睛】
本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可
解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;
(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.
【详解】
(1)由题意,补全图形如下:
,理由如下:
,
,
,
,
;
(2),理由如下:
如图,延长BA交DF于点O,
,
,
,
,
;
(3)由题意,有以下两种情况:
①如图3-1,,理由如下:
,
,
,
,
,
由对顶角相等得:,
;
②如图3-2,,理由如下:
,
,
,
,
.
【点睛】
本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
二十五、解答题
25.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
展开阅读全文