资源描述
人教版部编版八年级数学下册期末试卷试卷(word版含答案)
一、选择题
1.要使二次根式有意义的条件是( )
A. B. C. D.
2.若的三边a、b、c满足条件,则为( )
A.等腰三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形
3.在四边形ABCD中,连接对角线AC,已知AB=CD,现增加一个条件,不能判断该四边形是平行四边形的是( )
A.AB∥CD B.AD=BC C.∠B=∠D D.∠BAC=∠ACD
4.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )
A.分 B.分 C.分 D.分
5.如图,在正方形ABCD中,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,交AB于点H,则的值是( )
A. B. C. D.
6.如图,在三角形纸片ABC中,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为( )
A.50° B.118° C.100° D.90°
7.如图,在△ABC中,∠C=90°,AC=3 ,BC=2.以AB为一条边向三角形外部作正方形,则正方形的面积是( )
A.5 B.6 C.12 D.13
8.如图,在平面直角坐标系中,四边形,…都是菱形,点…都在x轴上,点,…都在直线上,且,则点的横坐标是( )
A. B. C. D.
二、填空题
9.若二次根式有意义,且关于x的分式方程+2=有正数解,则符合条件的整数m的和是 _____.
10.已知菱形的两条对角线长为和,菱形的周长是_______,面积是________.
11.如图 ,在△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D.若 BD=10cm,BC=8cm,则点 D 到直线 AB 的距离= ________.
12.如图,在矩形中,对角线,交于点,若,,则的长为________.
13.已知一次函数y=kx+b图像过点(0,5)与(2,3),则该一次函数的表达式为_____.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.
15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B的坐标为(,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.
16.如图,是的中线,把沿折叠,使点落在点处,与的长度比是_______________________.
三、解答题
17.计算:
(1)﹣4;
(2)(2﹣)2×(6+4).
18.小王与小林进行遥控赛车游戏,终点为点A,小王的赛车从点C出发,以4米/秒的速度由西向东行驶,同时小林的赛车从点B出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.出发3秒钟时,遥控信号是否会产生相互干扰?
19.图①、图②均是的正方形网格,小正方形的边长为1,每个小正方形的顶点称为格点,点、均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,所画图形不全等,不要求写画法.
(1)在图①中以线段为边画一个正方形.
(2)在图②中以线段为边画一个菱形.
20.如图,在平行四边形中,,是对角线上的点,且,平分交于点,平分交于点.
(1)求证:四边形是平行四边形;
(2)当四边形是菱形时,求证:四边形是菱形.
21.观察下列等式:
①
②
③
······
回答下列问题:
(1)利用你观察到的规律,化简: .
(2) .(n为正整数)
(3)利用上面所揭示的规律计算:
22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下:
甲店:购买电脑打八折;
乙店:先赠一台电脑,其余电脑打九折优惠.
设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元).
(1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式;
(2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算?
23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;
(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内)
24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.
(1)点C的坐标是( , ),直线BC的表达式是 ;
(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;
(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;
25.如图1,四边形是正方形,点在边上任意一点(点不与点,点重合),点在的延长线上,.
(1)求证:;
(2)如图2,作点关于的对称点,连接、、,与交于点,与交于点.与交于点.
①若,求的度数;
②用等式表示线段,,之间的数量关系,并说明理由.
26.在正方形ABCD中,AB=4,点E是边AD上一动点,以CE为边,在CE的右侧作正方形CEFG,连结BF.
(1)如图1,当点E与点A重合时,则BF的长为 .
(2)如图2,当AE=1时,求点F到AD的距离和BF的长.
(3)当BF最短时,请直接写出此时AE的长.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据二次根式有意义的条件,即根号下为非负数,判断即可.
【详解】
解:∵有意义,
∴,
解得:,
故选:D.
【点睛】
本题主要考查二次根式有意义的条件,明确根号下为非负数是解题的关键.
2.C
解析:C
【详解】
解析:∵,∴或.
当只有成立时,是等腰三角形.
当只有成立时,是直角三角形.
当,同时成立时,是等腰直角三角形.
答案:C
题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.
3.C
解析:C
【解析】
【分析】
根据平行四边形的判定定理对各个选项进行判断即可.
【详解】
解:A、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,不符合题意;
B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,不符合题意;
C、∵AB=CD,∠B=∠D,不能判定四边形ABCD是平行四边形,符合题意;
D、∵∠BAC=∠ACD,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,不符合题意;
故选C.
【点睛】
本题主要考查了平行四边形的判定定理,解题的关键在于能够熟练掌握平行四边形的判定定理.
4.B
解析:B
【解析】
【分析】
根据加权平均数的定义列式计算即可.
【详解】
解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),
故选:B.
【点睛】
本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.
5.A
解析:A
【分析】
设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.
【详解】
解:设AB=2a,
∵四边形ABCD为正方形,
∴AD=2a,
∵E点为AD的中点,
∴AE=a,
∴BEa,
∴EFa,
∴AF=EF﹣AE=(1)a,
∵四边形AFGH为正方形,
∴AH=AF=(1)a,
∴.
故选:A.
【点睛】
本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.
6.B
解析:B
【解析】
【分析】
在△ABC中利用三角形内角和定理可求出∠C的度数,由折叠的性质,可知:∠CDE=∠C′DE,∠CED=∠C′ED,结合∠2的度数可求出∠CED的度数,在△CDE中利用三角形内角和定理可求出∠CDE的度数,再由∠1=180°﹣∠CDE﹣∠C′DE即可求出结论.
【详解】
解:在△ABC中,∠A=60°,∠B=70°,
∴∠C=180°﹣∠A﹣∠B=50°.
由折叠,可知:∠CDE=∠C′DE,∠CED=∠C′ED,
∴∠CED==99°,
∴∠CDE=180°﹣∠CED﹣∠C=31°,
∴∠1=180°﹣∠CDE﹣∠C′DE=180°﹣2∠CDE=118°.
故选:B.
【点睛】
本题考查了三角形内角和定理以及折叠的性质,利用三角形内角和定理及折叠的性质求出∠CDE的度数是解题的关键.
7.D
解析:D
【解析】
【分析】
利用勾股定理即可求解.
【详解】
解:∵∠C=90∘,
∴AB2=AC2+BC2=32+22=13,
∴正方形面积S=AB2=13,
故选D.
【点睛】
本题考查了勾股定理的应用,属于基础题.
8.A
解析:A
【分析】
分别过点作轴的垂线,交于,再连接
,利用勾股定理及根据菱形的边长求得、、的坐标然后分别表示出、、的坐标找出规律进而求得的坐标.
【详解】
解:分别过点作轴的垂线,交于,再连接
如下图:
,
,
,
在中,
根据勾股定理得:,
即,
解得:,
的纵坐标为:,横坐标为,
,,
四边形,,,都是菱形,
,,,,
的纵坐标为:,代入,求得横坐标为2,
,
的纵坐标为:,代入,求得横坐标为5,
,,
,,
,,
,;
,,
,
则点的横坐标是:,
故选:A.
【点睛】
本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列点的坐标,找出规律是解题的关键.
二、填空题
9.-4
【解析】
【分析】
根据二次根式有意义,可得m≤2,解出关于x的分式方程 +2=的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.
【详解】
解:+2=,
去分母得,﹣m+2(x﹣1)=3,
解得,x=,
∵关于x的分式方程+2=有正数解,
∴>0,
∴m>﹣5,
又∵x=1是增根,当x=1时,=1,即m=﹣3,
∴m≠﹣3,
∵有意义,
∴2﹣m≥0,
∴m≤2,
因此﹣5<m≤2且m≠﹣3,
∵m为整数,
∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,
故答案为:﹣4.
【点睛】
考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,整数m的意义是正确解答的关键.
10.A
解析:24
【解析】
【分析】
首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.
【详解】
解:如图,
菱形ABCD中,AC=8,BD=6,
∴OA=AC=4,OB=BD=3,AC⊥BD,
∴AB==5,
∴C菱形的周长=5×4=20,
S菱形ABCD=×6×8=24,
故菱形的周长是20,面积是24.
故答案为:20;24.
【点睛】
本题考查了菱形的周长和性质得求法,勾股定理,属于简单题,熟悉菱形的性质和菱形求面积的特殊方法是解题关键.
11.D
解析:6cm
【解析】
【分析】
过点D作DE⊥AB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解.
【详解】
如图,过点D作DE⊥AB于E,
∵∠C=90°,BD=10cm,BC=8cm,
∴CD=cm,
∵∠C=90°,BD是∠ABC的平分线,
∴DE=CD=6cm,
即点D到直线AB的距离是6cm.
故答案为:6cm.
【点睛】
本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键.
12.D
解析:
【分析】
由题意易得OD=OC,∠DOC=60°,进而可得△DOC是等边三角形,然后问题可求解.
【详解】
解:∵四边形ABCD是矩形,BD=12,
∴,
∵∠AOD=120°,
∴∠DOC=60°,
∴△DOC是等边三角形,
∴;
故答案为:6.
【点睛】
本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键.
13.y=-x+5
【分析】
由直线y=kx+b经过(0,5)、(2,3)两点,代入可求出函数关系式.
【详解】
解:把点(0,5)和点(2,3)代入y=kx+b得
,解得:,
所以一次函数的表达式为y=-x+5,
故答案为:y=-x+5.
【点睛】
此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.
14.A
解析:
【详解】
解:设AC与BD相交于点O,连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴,AC=BD,∠ADC=90°.
∴OA=OD.
∵AB=3,AD=4,∴由勾股定理得:AC= .
∵ ,∴DM=.
∵,
∴ .
∴PE+PF=DM=.故选B.
15.①③④
【分析】
根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,
解析:①③④
【分析】
根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.
【详解】
解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,
x=100.
故①正确;
②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,
故②错误;
③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=,点B纵坐标为120﹣60×=75,
故③正确;
④设快递车从乙地返回时的速度为y千米/时,则(y+60)()=75,
y=90,
故④正确.
故答案为①③④.
【点睛】
本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.
16.【分析】
设BD=CD=x,由题意可知∠ADC=45°,且将ADC沿AD折叠,故,则可运用勾股定理,将用x进行表示,即可得出的值.
【详解】
解:∵点D是BC的中点,设BD=CD=x,则BC=2x
解析:
【分析】
设BD=CD=x,由题意可知∠ADC=45°,且将ADC沿AD折叠,故,则可运用勾股定理,将用x进行表示,即可得出的值.
【详解】
解:∵点D是BC的中点,设BD=CD=x,则BC=2x,
又∵∠ADC=45°,将ADC沿AD折叠,故,=x,
∴,是直角三角形,
根据勾股定理可得:,
∴,
故答案为:.
【点睛】
本题主要考察了折叠问题与勾股定理,解题的关键在于通过折叠的性质,得出直角三角形,并运用勾股定理.
三、解答题
17.(1)2;(2)4
【分析】
(1)根据二次根式的混合运算法则计算即可;
(2)根据完全平方公式以及平方差公式计算即可.
【详解】
解:(1)原式=﹣4
=﹣4
=6﹣4
=2;
(2)原式=(4﹣
解析:(1)2;(2)4
【分析】
(1)根据二次根式的混合运算法则计算即可;
(2)根据完全平方公式以及平方差公式计算即可.
【详解】
解:(1)原式=﹣4
=﹣4
=6﹣4
=2;
(2)原式=(4﹣4+2)×(6+4)
=(6﹣4)×(6+4)
=36﹣32
=4.
【点睛】
本题考查了二次根式的混合运算,乘法公式的运用,熟练掌握相关运算法则是解本题的关键.
18.不会
【分析】
根据题意可分别求出出发3秒钟时小王和小林的赛车行驶的路程,从而可分别求出他们的赛车距离终点的距离,再结合勾股定理即可求出出发3秒钟时他们赛车的距离,和遥控信号会产生相互干扰的距离小于
解析:不会
【分析】
根据题意可分别求出出发3秒钟时小王和小林的赛车行驶的路程,从而可分别求出他们的赛车距离终点的距离,再结合勾股定理即可求出出发3秒钟时他们赛车的距离,和遥控信号会产生相互干扰的距离小于或等于25米作比较即可得出答案.
【详解】
解:如图,出发3秒钟时,米,米,
∵AC=40米,AB=30米,
∴AC1=28米,AB1=21米,
∴在中,米>25米,
∴出发3秒钟时,遥控信号不会产生相互干扰.
【点睛】
本题考查勾股定理的实际应用.读懂题意,将实际问题转化为数学问题是解答本题的关键.
19.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据正方形的判定进行画图即可;
(2)根据菱形的判定进行画图即可.
【详解】
解:(1)如图所示:,,
∴,
∴∠ABC=90°,
∴四边形AB
解析:(1)见解析;(2)见解析
【解析】
【分析】
(1)根据正方形的判定进行画图即可;
(2)根据菱形的判定进行画图即可.
【详解】
解:(1)如图所示:,,
∴,
∴∠ABC=90°,
∴四边形ABCD是正方形;
(2)如图所示,
∴四边形ABEF是菱形.
【点睛】
本题主要考查了菱形的判定,正方形的判定,勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)见解析;(2)见解析
【分析】
(1)连接EF交MN于O,证△ADE≌△CBF(ASA),得DE=BF,再证DE∥BF,则四边形BEDF是平行四边形,得OE=OF,OB=OD,然后证OM=ON
解析:(1)见解析;(2)见解析
【分析】
(1)连接EF交MN于O,证△ADE≌△CBF(ASA),得DE=BF,再证DE∥BF,则四边形BEDF是平行四边形,得OE=OF,OB=OD,然后证OM=ON,即可得出结论;
(2)由菱形的性质得EF⊥MN,由(1)得四边形BEDF是平行四边形,即可得出结论.
【详解】
证明:(1)连接EF交MN于O,
∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=BC,AD∥BC,
∴∠ADB=∠DBC,
∵DE平分∠ADB,BF平分∠DBC,
∴∠ADE=∠EDB=∠CBF=∠FBD,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(ASA),
∴DE=BF,
∵∠EDB=∠FBD,
∴DE∥BF,
∴四边形BEDF是平行四边形,
∴OE=OF,OB=OD,
∵BM=DN,
∴OB-BM=OD-DN,
即OM=ON,
∴四边形EMFN是平行四边形;
(2)∵四边形EMFN是菱形,
∴EF⊥MN,
由(1)得:四边形BEDF是平行四边形,
∴平行四边形BEDF是菱形.
【点睛】
本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE≌△CBF是解题的关键,属于中考常考题型.
21.(1);(2);(3)
【解析】
【分析】
(1)根据平方差公式分母有理化即可;
(2)根据平方差公式分母有理化即可;
(3)对每一个式子分母有理化,再进行合并计算即可;
【详解】
(1);
故答案
解析:(1);(2);(3)
【解析】
【分析】
(1)根据平方差公式分母有理化即可;
(2)根据平方差公式分母有理化即可;
(3)对每一个式子分母有理化,再进行合并计算即可;
【详解】
(1);
故答案是:;
(2);
故答案是:;
(3),
,
;
【点睛】
本题主要考查了二次根式分母有理化,平方差公式,准确计算是解题的关键.
22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合
解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算
【分析】
(1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元);
(2)根据(1)的结论列方程或不等式解答即可.
【详解】
解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15);
y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15);
(2)当3840x=4320x﹣4320时,
解得x=9,
即当购买9台电脑时,到两家商店购买费用相同;
当3840x<4320x﹣4320时,
解得x>9,
即当10≤x≤15时,到甲商店更合算;
当3840x>4320x﹣4320时,
解得x<9,
即当6≤x≤8时,到乙商店更合算.
【点睛】
本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键.
23.(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的
解析:(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;
(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长.
【详解】
解:(1)证明:如图1,连结,
,,,
,
,
即;
四边形是平行四边形,
,
,
,
,
四边形是菱形
(2)如图2,连结,交于点,作于点,则,
由(1)得,四边形是菱形,
,
,
,,
,
,
,
由,且,得,
解得;
,
,
由,且,得,
点在边上且不与点、重合,
,
关于的函数解析式为,
(3)如图3,,且点在的延长线上,
,,
,
,
,
,
,
,
,
,
,
,
,
,,
,
,
即等腰三角形的底边长为8;
如图4,,作于点,于点,则,
,
,
,
,
,
由(2)得,,
,
,
即等腰三角形的底边长为;
如图5,,点与点重合,连结,
,,,
,
,
即,
等腰三角形的底边长为6.
综上所述,以为腰的等腰三角形的底边长为8或或6,
故答案为:8或或6.
【点睛】
此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.
24.(1),;(2)或;(3)存在,或或
【解析】
【分析】
(1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4;
(2)当D点在E
解析:(1),;(2)或;(3)存在,或或
【解析】
【分析】
(1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4;
(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,由△EDF是等腰直角三角形,可证得△MED≌△NDF(AAS),设D(0,y),F(m,﹣m+4),E(﹣1,2),由ME=y﹣2,MD=1,DN=y﹣2,NF=1,得到m=y﹣2,y=1+(﹣m+4)=5﹣m,求出D(0,);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q,同理可证△PED≌△QDF(AAS),设D(0,y),F(m,﹣m+4),得到PE=2﹣y,PD=1,DQ=2﹣y,QF=1,所以m=2﹣y,1=﹣m+4﹣y,求得D(0,﹣1);
(3)连接OG,由S△ABG=S△ABO,可得OG∥AB,求出AB的解析式为y=2x+4,所以OG的解析式为y=2x,可求出G( ,),进而能求出AG的解析式为y=x+,设M(t,t+),N(n,0),①当BC、MN分别为对角线时,BC的中点为(,2),MN的中点为(,t+),求得N(﹣,0);②当BM、CN分别为对角线时,BM的中点为(,t+),CN的中点为(,0),求得N(﹣,0);③当BN、CM分别为对角线时,BN的中点为(,2),CM的中点为(,t+),求得N(,0).
【详解】
解:(1)∵△ABC面积为10,
∴×AC×OB=×AC×4=10,
∴AC=5,
∵A(﹣2,0),
∴C(3,0),
将点B与C代入y=kx+b,可得,
∴,
∴y=﹣x+4,
故答案为(3,0),y=﹣x+4;
(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,
∵△EDF是等腰直角三角形,
∴∠EDF=90°,ED=DF,
∵∠MDE+∠NDF=∠MDE+∠MED=90°,
∴∠NDF=∠MED,
∴△MED≌△NDF(AAS),
∴ME=DN,MD=FN,
设D(0,y),F(m,﹣m+4),
∵E是AB的中点,
∴E(﹣1,2),
∴ME=y﹣2,MD=1,
∴DN=y﹣2,NF=1,
∴m=y﹣2,y=1+(﹣m+4)=5﹣m,
∴m=,
∴D(0,);
当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q,
∵△EDF是等腰直角三角形,
∴∠EDF=90°,ED=DF,
∵∠PDE+∠QDF=∠PDE+∠PED=90°,
∴∠QDF=∠PED,
∴△PED≌△QDF(AAS),
∴PE=DQ,PD=FQ,
设D(0,y),F(m,﹣m+4)
∵E是AB的中点,
∴E(﹣1,2),
∴PE=2﹣y,PD=1,
∴DQ=2﹣y,QF=1,
∴m=2﹣y,1=﹣m+4﹣y,
∴m=3,
∴D(0,﹣1);
综上所述:D点坐标为(0,﹣1)或(0,);
(3)连接OG,
∵S△ABG=S△ABO,
∴OG∥AB,
设AB的解析式为y=kx+b,
将点A(﹣2,0),B(0,4)代入,得,
解得,
∴y=2x+4,
∴OG的解析式为y=2x,
∴2x=﹣x+4,
∴x=,
∴G( ,),
设AG的解析式为y=k1x+b1,
将点A、G代入可得,
解得,
∴y=x+,
∵点M为直线AG上动点,点N在x轴上,
则可设M(t,t+),N(n,0),
当BC、MN分别为对角线时,
BC的中点为(,2),MN的中点为(,t+),
∴,t+=2,
∴t=,n=﹣,
∴N(﹣,0);
当BM、CN分别为对角线时,
BM的中点为(,t+),CN的中点为(,0),
∴,t+=0,
∴t=﹣,n=﹣,
∴N(﹣,0);
③当BN、CM分别为对角线时,
BN的中点为(,2),CM的中点为(,t+),
∴,t+=2,
∴t=,n=,
∴N(,0);
综上所述:以点B,C,M,N为顶点的四边形为平行四边形时,N点坐标为或或.
【点睛】
本题考查一次函数的综合应用,(2)中注意D点的位置有两种情况,避免丢解,同时解题时要构造K字型全等,将D点、F点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.
25.(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析
【分析】
(1)证△CBE≌△CDF(SAS),即可得出结论;
(2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再
解析:(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析
【分析】
(1)证△CBE≌△CDF(SAS),即可得出结论;
(2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再由全等三角形的性质得∠BCE=∠DCP=∠GCP=20°,则∠BCG=130°,然后由等腰三角形的性质和三角形内角和定理得∠CGH=25°,即可求解;
②连接BD,由①得CP垂直平分DG,则HD=HG,∠GHF=∠DHF,设∠BCE=m°,证出∠GHF=∠CHB=45°,再证∠DHB=90°,然后由勾股定理得DH2+BH2=BD2,进而得出结论.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴CB=CD,∠CBE=∠CDF=90°,
在△CBE和△CDF中,
,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:①点D关于CF的对称点G,
∴CD=CG,DP=GP,
在△DCP和△GCP中,
,
∴△DCP≌△GCP(SSS),
∴∠DCP=∠GCP,
由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCP=∠GCP=20°,
∴∠BCG=20°+20°+90°=130°,
∵CG=CD=CB,
∴∠CGH=,
∴∠CHB=∠CGH+∠GCP=25°+20°=45°;
②线段CD,GH,BH之间的数量关系为:GH2+BH2=2CD2,理由如下:
连接BD,如图2所示:
由①得:CP垂直平分DG,
∴HD=HG,∠GHF=∠DHF,
设∠BCE=m°,
由①得:∠BCE=∠DCP=∠GCP=m°,
∴∠BCG=m°+m°+90°=2m°+90°,
∵CG=CD=CB,
∴∠CGH=,
∴∠CHB=∠CGH+∠GCP=45°−m°+m°=45°,
∴∠GHF=∠CHB=45°,
∴∠GHD=∠GHF+∠DHF=45°+45°=90°,
∴∠DHB=90°,
在Rt△BDH中,由勾股定理得:DH2+BH2=BD2,
∴GH2+BH2=BD2,
在Rt△BCD中,CB=CD,
∴BD2=2CD2,
∴GH2+BH2=2CD2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、勾股定理以及三角形内角和定理等知识;本题综合性强,熟练掌握正方形的性质,证明△CBE≌△CDF和△DCP≌△GCP是解题的关键.
26.(1);(2)点F到AD的距离为3,BF=;(3)2
【分析】
(1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可;
(2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC
解析:(1);(2)点F到AD的距离为3,BF=;(3)2
【分析】
(1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可;
(2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K,证明△EHF≌△CDE,再用勾股定理即可;
(3)当B,D,F共线时,此时BF取最小值,求出此时AE的值即可.
【详解】
解:(1)如图,连接DF,
∵∠CAF=90°,∠CAD=45°,
∴∠DAF=45°,
在△CAD和△FAD中,
,
∴△CAD≌△FAD(SAS),
∴DF=CD,
∴∠ADC=∠ADF=90°,
∴C,D,F共线,
∴BF2=BC2+CF2=42+82=80,
∴BF=,
故答案为:;
(2)如图,过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K,
∵四边形CEFG是正方形,∴EC=EF,∠FEC=90°,
∴∠DEC+∠FEH=90°,
又∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠DEC+∠ECD=90°,
∴∠ECD=∠FEH,
又∵∠EDC=∠FHE=90°,
在△ECD和△FEH中,
,
∴△ECD≌△FEH(AAS),
∴FH=ED,
∵AD=4,AE=1,
∴ED=AD-AE=4-1=3,
∴FH=3,即点F到AD的距离为3,
∴∠DHK=∠HDC=∠DCK=90°,
∴四边形CDHK为矩形,
∴HK=CD=4,
∴FK=FH+HK=3+4=7,
∵△ECD≌△FEH,
∴EH=CD=AD=4,
∴AE=DH=CK=1,
∴BK=BC+CK=4+1=5,
在Rt△BFK中,BF=;
(3)∵当A,D,F三点共线时,BF的最短,
∴∠CBF=45°,
∴FH=DH,
由(2)知FH=DE,EH=CD=4,
∴ED=DH=4÷2=2,
∴AE=2.
【点睛】
本题主要考查正方形的性质和全等三角形的判定,关键是要作辅助线构造全等的三角形,在正方形和三角形中辅助线一般是垂线段,要牢记正方形的两个性质,即四边相等,四个内角都是90°.
展开阅读全文