资源描述
人教版五年级上册数学应用题附答案
1.节约点滴,川流不息。某市自来水公司鼓励节约用水,采取按月分段计费的方法收取水费。12吨以内(包括12吨)每吨3.5元;超过12吨的部分,每吨4.6元。笑笑家7月份的用水量为14吨,应缴水费多少元?
2.李叔叔把每月车辆保养,使用相关信息记录如下:
①李叔叔想计算出每月加油共需要多少钱,他需要用到记录单上的哪些信息?请你在这些信息前面的字母上打上“√”。
②根据你选出的信息,计算出李叔叔每月加油所需的钱数。
记录单A保险费平均每月260元
B保养美容和维修平均每月180元
C目前每升汽油的价钱是6.41元
D每千米大约油耗0.08升
E每月平均行驶1000千米
F每月的停车费大约是120元
3.明明去澳门参加科技夏令营,买了1个铅笔盒花了12澳门元,折合人民币多少元?(得数保留两位小数)
中国银行外汇牌价(单位:元)
1港元兑换人民币0.84251澳门元兑换人民币0.818
1泰铢兑换人民币0.2165
4.1台拖拉机每小时耕地0.7公顷,3台拖拉机1.5小时耕地多少公顷?
5.包子铺的早餐有三文治、包子、奶茶、煎鸡蛋和粥等。
(1)妈妈买了2个三文治和4个煎鸡蛋,共需要多少钱?
(2)请你为自己选一份健康、科学的早餐,并计算一共需要多少钱。
先在下面编一道题目:
再在下面解答:
6.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
7.自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费,收费标准如下。
月用水量
10吨及以内的部分
超过10吨不超过20吨的部分
超过20吨的部分
收费标准(元/吨)
2
2.5
3
小明家上个月用水量是21.5吨,应交水费多少元?
8.下面框里是张叔叔每月养车费用的记录单。
记录单A.保养平均每月260元:
B.保养美容和保修平均每月180元;
C.目前每升汽油的价格是6.70元;
D.每千米大约耗油0.08升;
E.每月平均行驶1000千米;F.每月停车费大约120元。
(1)张叔叔想计算出每月加油共需要多少钱?他需要用到记录单上的哪些信息?请把所选信息前面的字母用“○”圈出来。
(2)根据你选出的信息,计算出张叔叔每月加油一共需要多少元钱?
9.学校开展“阅读嘉年华”活动。小丽选中了一套《科学探索》丛书,丛书信息如下图,购买这套丛书一共要花多少钱?
10.李叔叔住的宾馆到会议中心的路程是9.5km,根据出租车收费标准,李叔叔打出租车从宾馆到会议中心应付车费多少元?
出租车收费标准(1)3km以内8元;
(2)超过3km部分,每千米1.5元(不足1km按1km计算)。
11.甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,已知甲车每小时行40千米,乙车每小时行35千米。填空并回答问题:
(1)相遇时,两车行了( )小时。
(2)相遇时,甲车行了( )千米。
(3)相遇后两车立即返回各自的出发地,这时甲车把速度提高到原来的,乙车速度不变。当甲车返回到A地时,乙车还需多少小时才能到达B地?(写出必要的计算过程)
12.妈妈到水果店买水果,买香蕉用了15.8元,比2千克苹果多花了2.4元,每千克苹果多少钱?
13.一件羽绒服的价格是2899元,比一件衬衣价格的5倍少101元,这件衬衣的价格是多少元?(用方程解)
14.鸡兔同笼,鸡比兔多1只,共有腿62条。鸡和兔各有多少只?
15.两工程队同时开凿一条1377米长的隧道。各从一端相向施工,甲队的开凿速度是乙队的1.25倍,45天后完成施工。甲、乙两队每天分别开凿多少米?
16.两列火车从相距550km的两地同时相向开出。甲车每小时行120km,乙车每小时行100km,经过几小时两车相遇?(先写出数量关系式,再列方程解答)
17.春节快到了,某超市购买了一批中国结用于节日装饰。其中小中国结有540只,比购进的大中国结的4倍少60只,超市购进多少只大中国结?(用方程解答)
18.甲乙两辆汽车同时从相距720千米的两地相对开出,经过4小时两车相遇,已知甲车速度是乙车速度的1.25倍,求甲、乙两车的速度分别是每小时行多少千米?(用方程解答)
19.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答)
画线段图:
20.小林家和小云家相距1.8千米,周日早上9:00两人同时从家骑自行车相向而行,在途中相遇。(如下图)
(1)从上图看,( )的速度快一些。
(2)小林每分钟行0.25千米,小云每分钟行多少千米?
21.一节1号电池多少元?
22.某工程队修一条水渠,原计划每天修0.45千米,32天修完,后因增加了机械设备,每天修水渠0.6千米。实际用多少天可以修完这条水渠?
23.一辆汽车0.4小时行驶25千米,这辆汽车每小时行驶多少千米?行驶1千米,这辆汽车需要多少小时?
24.为弘扬尊老、爱老、敬老、助老的传统美德,志愿者张叔叔骑自行车,李叔叔骑摩托车从相距112千米的两地同时出发,相向而行。李叔叔骑摩托车每小时行54千米,若他们经过1.6小时在敬老院相遇,张叔叔骑自行车每小时行多少千米?
25.3台同样的小型收割机,7小时可以收割6.3吨小麦。照这样计算,一台小型收割机每小时可以收割多少吨小麦?
26.甲乙两车同时从相距270千米的两地相对开出,经过2.5小时相遇,甲车每小时行52千米,乙车每小时行多少千米?
27.近年来,柳州螺蛳粉远销海外,实现了地方小吃向国际产业的转变。
(1)某厂家有3条自动化螺蛳粉生产线,4小时能生产米粉9.6吨。照这样计算,一条自动化螺蛳粉生产线每小时能生产米粉多少吨?
(2)小莉要给在重庆的表哥寄一箱3.3kg螺蛳粉。某快递公司寄到重庆的快递收费标准如下,请算一算小莉要付多少快递费?
收费标准:1kg以内6元;超过1kg的部分,每千克2.5元(不足1kg按1kg计算)。
28.刘老师用100元为同学们买学习用具作奖品,她花了42.5元买了5本笔记本,剩下的钱买2.5元一支的碳素笔,可以买多少支碳素笔?
29.五(2)班教室长,宽。现在教室翻新要铺上正方形地砖(如图),至少需要多少块这样的地砖?(不考虑损耗)
30.某汽车销售公司去年第五季度售出小汽车和面包车共84辆。售出的小汽车数量是面包车数量的3倍。这个公司去年第五季度销售小汽车和面包车各多少辆?(列方程解决问题)
31.同学们到公园去划船,大船每条坐4人,小船每条坐2人,共租了18条大船和小船,正好坐满。
(1)划船的同学可能是51人吗?为什么?
(2)如果划船的同学正好是60人,那么大船、小船各租了多少条?
32.如图,ABCD是平行四边形,AB=4BE,BC=3BF。△BEF的面积是12cm2,平行四边形ABCD的面积是多少cm2。
33.陈伯伯靠墙围了一个梯形菜地(靠墙的一边不用篱笆),如下图,已知篱笆长57米,求这块菜地的面积有多少平方米?
34.一批同样的圆木堆成的横截面是梯形,上层是5根,下层是10根,一共堆6层,这堆圆木共多少根?如果这批圆木共重26.1吨,每根圆木重多少吨?
35.一个直角梯形,上底是24cm,如果上底增加16cm,下底不变,这个直角梯形就变成一个正方形.求原来梯形的面积.
36.剪一张梯形纸片,先对折使两底重合在一条直线上,再沿折痕把它剪开,把上面的部分与下面部分拼成一个平行四边形。(如下图操作)
观察剪拼前后的梯形和平行四边形,你能发现哪些结论?(写出3条)
37.一块梯形地的面积是450平方米,它的下底是40米,高15米。它的上底是多少米?(只列式不解答)
38.如图,ABCD是平行四边形,BC=8cm,EC=6cm,阴影部分面积比△EFG的面积大12cm2,求FC的长。
39.如图,大三角形的空白部分是一个正方形,三角形甲与三角形乙的面积和是39平方厘米,求大三角形ABC的面积。(提示:可以用拼一拼转化的方法,也可以用方程)
40.如图,三角形ABC和三角形DEF是两个完全相同的直角三角形,把它们的一部分叠放在一起,求阴影部分的面积。
41.请问:今年大头儿子几岁?(用方程解答)
42.五(1)班图书角故事书的本数是科技书的3倍,故事书比科技书多48本,故事书和科技书分别有多少本?(列方程解答)
43.科技馆7月份参观人数达到13.78万人,其中儿童是成人的1.6倍。7月份参观科技馆的儿童和成人各有多少万人?(列方程解答)
44.“夏至”是一年中白昼最长,黑夜最短的一天。这天苏州白昼的时间大约是黑夜的1.4倍,那么这天苏州的白昼时间大约是多少小时?(用方程解)
45.鸡兔同笼,鸡比兔多1只,共有腿62条。鸡和兔各有多少只?
46.张老师买4支同样的钢笔比买1个足球多用42.8元,1个足球的价格是1支钢笔的2倍,1支钢笔多少元?(列方程解答)
47.小明和小芳是集邮爱好者,小明的邮票数量是小芳的5倍,如果小明给小芳38张,他们的邮票数量正好相等,小明和小芳原来各有多少张邮票?(用方程解)
48.故事类图书和科普类图书各有多少本?(列方程解答)
49.实验小学四、五年级喜欢足球的学生数共360人,五年级喜欢足球的学生数是四年级喜欢足球的学生数的4倍多15人,两个年级喜欢足球的学生各多少人?(用方程解答)
50.下图中,甲的面积比乙的面积多多少平方厘米?
51.学校举行书法作品展,决定在长是36米的文化长廊的两侧每隔3米挂一幅书法作品(两端不挂)。两侧一共要挂多少幅书法作品?
52.王欣家12月份用电240度,按照以上收费标准,王欣家12月份应付电费多少元?
上海市居民阶梯电价收费标准(按月计算)
第一档:用电量不超过180度的部分,每度0.45元;
第二档:超过180度,但不超过300度的部分,每度比第一档加价0.1元;
第三档:超过300度的部分,每度比第一档加价0.5元;
53.某市为鼓励市民节约用水,规定水费收费标准如下:每月用水10吨以内(包括10吨),每吨2.5元;超过10吨的部分,每吨3.5元。小英家上个月用水17吨,应缴费多少元?
54.妈妈买了苹果和梨各3kg,共花了27.3元。梨每千克3.8元,苹果每千克多少元?(列方程解答)
55.国庆节期间,伟伟一家开车到游乐场游玩,那里的停车场收费标准如下,伟伟的爸爸付了13.5元的停车费,你知道伟伟的爸爸的车最多停了多长时间吗?
56.贝贝和丽丽、红红一起去给第一小组的48名同学买汽水,下图是冷饮店打的广告,如果每瓶汽水1.2元,她们至少用多少钱给大家买汽水,才可使每人都能喝到1瓶汽水?
57.下图表示的是两种水果的单价(每种水果的单价都被▉挡住了一个数字)。
王阿姨用100元钱买了3千克荔枝后,剩下的钱够买5千克苹果吗?
58.李叔叔家有一块面积是45m2的平行四边形土地,种植了辣椒和茄子,如下图所示。你能求出辣椒的种植面积是多少m2吗?
59.买75千克苹果,怎样买合算?至少需要多少钱?
60.建材仓库有一批水泥管,一层一层堆成梯形,最上面一层有5根水泥管,下面的一层总是比上面的一层多1根,一共堆6层。这批水泥管有多少根?
61.五(1)班原有班费24.2元,同学们卖废品又得到16.4元。用这些钱正好可以买14根跳绳,平均每根跳绳多少元?
62.在一条全长4km的街道两边安装路灯(两端都安装),每隔40m安装一盏。一共要安装多少盏路灯?
63.要在一条长3600米的公路两侧植梧桐树(每侧两端都要植),计划相邻两棵树之间相距20米,共需梧桐树多少棵?
64.城东小学的同学们做早操,21个同学排成一排,每相邻的两个同学之间的距离相等,第一个人到最后一个人的距离是40米,相邻两个人间距多少米?
65.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
66.四年级学生去博物馆参观,旅游公司派出的8辆大客车想停在校外一条长100米的道路一侧,如果每辆大客车长11米,前后间隔3米,照这样计算,这条路的一侧能否停下这8辆大客车?
67.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯?
68.马路的一边每相隔9米栽有一棵柳树(两端都栽),张军乘汽车5分钟共看到501棵树。问汽车每小时走多少千米?
69.琳琳准备购买4千克苹果和2千克葡萄。
70.一块花布(如下图)共绣了5朵花,每朵花的宽都是5.4cm,每两朵花之间的距离是1.6cm,这块花布一共长多少厘米?
【参考答案】
1.2元
【解析】
根据总价=单价×数量,分别求出12吨以内的费用,以及超过12吨的部分的费用,然后求和,求出应缴水费多少元即可。
3.5×12+4.6×(14-12)
=3.5×12+4.6×2
=42+9.2
=51.2(元)
答:应缴水费51.2元。
【点睛】
此题主要考查了乘法、加法的意义的应用,解答此题的关键是熟练掌握单价、总价、数量的关系。
2.C
解析:①C、D、E;
②512.8元
【解析】
①从问题入手,李叔叔想计算出每月加油共需要多少钱,需要知道汽油每升价格、行驶距离和汽车油耗,据此选择。
②根据每月平均行驶距离×每千米油耗,先求出每月油耗,油耗×每升价格即可。
①
②1000×0.08×6.41=512.8(元)
答:李叔叔每月加油需要512.8元钱。
【点睛】
关键是理解数量关系,掌握小数乘法的计算方法。
3.82元
【解析】
1澳门元兑换人民币0.818,用0.818元乘上12,即可求出12澳门元折合人民币多少元。
(元)
答:折合人民币9.82元。
【点睛】
此题主要考查了小数乘整数的小数乘法,要熟练掌握,注意弄清楚题中的数量关系。
4.15公顷
【解析】
可以先求3台1小时耕地多少公顷,再求3台拖拉机1.5小时可以耕地多少公顷。
0.7×3×1.5
=2.1×1.5
=3.15(公顷)
答:3台拖拉机1.5小时耕地3.15公顷。
【点睛】
此题主要根据工作效率、工作时间、工作量三者之间的关系解决问题。
5.(1)15元;(2)见详解
【解析】
(1)总价=单价×数量,用三文治的价格乘上三文治的数量再加上煎鸡蛋的单价乘煎鸡蛋的数量即可。
(2)选出一份健康、科学的早餐,按照总价=单价×数量计算即可。(答案不唯一)
(1)2×4.5+4×1.5
=9+6
=15(元)
答:妈妈买了2个三文治和4个煎鸡蛋,共需要15元。
(2)早餐买了4个包子和2个煎鸡蛋一共需要多少钱?(问题不唯一)
4×1.2+2×1.5
=4.8+3
=7.8(元)
答:早餐买了4个包子和2个煎鸡蛋一共需要7.8元。
【点睛】
熟练掌握小数乘法的计算是解题的关键。
6.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
7.5元
【解析】
因为21.5吨已超过20吨,所以把21.5吨分成三段:一段是按10吨以内计费,另10吨按超过10吨但不超过20吨计费,剩余1.5吨按超过20吨的部分计费,根据单价×数量=总价分别求出每部分价钱再相加即可。
10×2+10×2.5+(21.5-10-10)×3
=20+25+4.5
=49.5(元)
答:应交水费49.5元。
【点睛】
此题考查的是分段计费问题,解答此题关键是明确按照不同标准计费。
8.(1)他需要用到记录单上每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)536元
【解析】
(1)要想求出每月加油共需要的钱数,则需要知道油的单价和数量,据此解答即可。
(2)根据单价×数量=总价,即可求出每月加油共需要的钱数,据此计算即可。
(1)他需要知道每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)6.7×(0.08×1000)
=6.7×80
=536(元)
答:张叔叔每月加油一共需要536元钱。
【点睛】
本题考查单价、数量和总价的关系,明确它们之间的关系是解题的关键。
9.4元
【解析】
一本书的单价×一套书的本数=这套书的总价
15.8×8=126.4(元)
答:购买这套丛书一共要花126.4元。
【点睛】
本题考查小数乘法在实际生活中的应用。
10.5元
【解析】
将9.5千米分成3千米的部分和超过3千米的部分,然后分别按照收费标准计算,最后加在一起。需要注意的是,超出的部分要先转换成整千米数。
9.5-3=6.5(千米)≈7(千米)
7×1.5+8
=10.5+8
=18.5(元)
答:李叔叔打出租车从宾馆到会议中心应付车费18.5元。
【点睛】
本题考查分段付费的问题,根据分段标准分开计算是解题关键。
11.A
解析:(1)4;(2)160;(3)0.8小时
【解析】
(1)先把两车的速度相加,求出速度和,再用总路程除以速度和,就是两车的相遇时间,即两车行驶的时间。
(2)根据速度×时间=路程,用甲车的速度乘4小时即可解答。
(3)根据分数乘法的意义,用甲车的速度乘求出甲车返回的速度,再用甲车行驶的路程除以返回的速度求出返回的时间,再用4小时减去甲车返回的时间(即乙车返回的时间)即可解答。
(1)300÷(35+40)
=300÷75
=4(小时)
(2)40×4=160(千米)
(3)4-160÷(40×)
=4-160÷50
=4-3.2
=0.8(小时)
答:当甲车返回到A地时,乙车还需0.8小时才能到达B地。
【点睛】
本题考查了路程问题的数量关系:速度×时间=路程的灵活运用。
12.7元
【解析】
根据题意可得等量关系式:2千克苹果的总价元买香蕉用的钱数,设每千克苹果元,然后列方程依据等式的性质解答即可。
解:设每千克苹果元,
答:每千克苹果6.7元钱。
【点睛】
分析题意,找准等量关系式是解答此题的关键。
13.600元
【解析】
将衬衣的价格设为未知数,再根据“衬衣价格×5-101=羽绒服价格”这一等量关系列方程解方程即可。
解:设这件衬衣的价格是x元。
5x-101=2899
5x-101+101=2899+101
5x=3000
x=3000÷5
x=600
答:这件衬衣的价格是600元。
【点睛】
本题考查了简易方程的应用,能根据题意找出等量关系并列方程是解题的关键。
14.兔子有10只,鸡有11只
【解析】
鸡比兔多1只,设兔子有只,则鸡有只;鸡有2条腿,兔有4条腿,根据等量关系:兔子的只数×4+鸡的只数×2条,即可列方程解答。
解:设兔有x只,则鸡有(x+1)只。
(只)
答:兔子有10只,鸡有11只。
【点睛】
本题考查了列含有两个未知数的方程,找出题目中的等量关系是解此题的关键。
15.甲队每天开凿17米,乙队每天开凿13.6米
【解析】
根据题意,这道题的等量关系是:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,根据这个等量关系,列方程解答。
解:设乙队每天开凿x米,则甲队每天开凿1.25x米。
(x+1.25x)×45=1377
2.25x×45=1377
2.25x×45÷45=1377÷45
2.25x=30.6
2.25x÷2.25=30.6÷2.25
x=13.6
(米)
答:甲队每天开凿17米,乙队每天开凿13.6米。
【点睛】
本题用方程解答比较简单,解题关键是找出题目中的等量关系:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,列方程解答。
16.相遇时间×速度和=路程;2.5小时
【解析】
相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的数量关系:相遇时间×速度和=路程,假设经过x小时两车相遇,根据数量关系列方程,求出相遇时间即可。
数量关系式:相遇时间×速度和=路程。
解:设经过x小时两车相遇。
x×(120+100)=550
220x=550
x=550÷220
x=2.5
答:经过2.5小时两车相遇。
【点睛】
本题考查行程问题的解题方法,解题关键是掌握相遇问题的数量关系,利用相遇时间×速度和=路程,列方程计算求出相遇时间。
17.150只
【解析】
设购进的大中国结有x只,根据关系式:大中国结的数量×4-60=小中国结的数量,据此列方程求解。
解:设购进的大中国结有x只。
答:超市购进150只大中国结。
【点睛】
解答本题的关键是认真审题,然后找出数量关系式是解题的关键。
18.甲车100千米;乙车80千米
【解析】
根据题意,等量关系:甲乙两车的速度和×相遇时间=两地之间的路程,设乙车每小时行驶千米,则甲车每小时行驶1.25千米,据此列出方程,并求解。
解:设乙车每小时行驶千米,则甲车每小时行驶1.25千米。
(千米)
答:甲车每小时行驶100千米,乙车每小时行驶80千米。
【点睛】
根据行程问题中的速度、时间、路程之间的关系,可以得出等量关系,按等量关系列出方程是解题的关键。
19.爸爸8400元,妈妈5600元。
【解析】
可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。
解:画出线段图:
设小红妈妈的工资为x,小红爸爸的工资为1.5x,则可列出方程:
则小红爸爸的工资为:(元)。
答:上个月小红爸爸的工资是8400元,小红妈妈工资为5600元。
【点睛】
本题主要考查的是运用方程解决实际问题,解题的关键是熟练找出等量关系,进而列出方程得出答案。
20.(1)小林;
(2)0.2千米
【解析】
(1)观察图示,旗子离着谁家远谁的速度就快一些;
(2)设小云每分钟行x千米,根据小林速度×时间+小云速度×时间=1.8千米,列出方程解答即可。
(1)从上图看,小林的速度快一些。
(2)解:设小云每分钟行x千米。
0.25×4+4x=1.8
1+4x-1=1.8-1
4x÷4=0.8÷4
x=0.2
答:小云每分钟行0.2千米。
【点睛】
关键是理解速度、时间、路程之间的关系,用方程解决问题的关键是找到等量关系。
21.9元
【解析】
由题意可知,根据总价÷数量=单价,据此解答即可。
5.4÷6=0.9(元)
答:一节1号电池0.9元。
【点睛】
本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。
22.24天
【解析】
我们用原计划每天修的千米数乘以天数就是要修的这条水渠的长度,再除以实际每天完成的千米数,就是实际要用的天数。
0.45×32÷0.6
=14.4÷0.6
=24(天)
答:实际用24天可以修完这条水渠。
【点睛】
此题属于工程问题,掌握“工作总量÷工作效率=工作时间”是解题关键。
23.5千米;0.016小时
【解析】
求这辆汽车每小时行驶多少千米,就是求这辆汽车的速度,根据速度=路程÷时间,代入数据计算即可;
求行驶1千米,这辆汽车需要多少小时,就是求时间,根据时间=路程÷速度,代入数据计算即可。
25÷0.4=62.5(千米)
1÷62.5=0.016(小时)
答:这辆汽车每小时行驶62.5千米;行驶1千米,这辆汽车需要0.016小时。
【点睛】
掌握速度、时间、路程三者之间的关系,以及小数除法的计算法则及应用是解题的关键。
24.16千米
【解析】
根据路程相遇时间速度之和,再用速度之和减去摩托车的速度,即可求得自行车的速度。
112÷1.6-54
=70-54
=16(千米时)
答:张叔叔骑自行车每小时行16千米。
【点睛】
本题考查相遇问题中的基本数量关系“速度和路程相遇时间”的灵活应用。
25.3吨
【解析】
先用收割小麦的总吨数除以3台收割机,求出每台收割机7小时收割小麦的吨数,再除以7,即可求出每台收割机每小时收割小麦的吨数。
6.3÷3÷7
=2.1÷7
=0.3(吨)
答:一台收割机每小时可以收割小麦0.3吨。
【点睛】
本题考查小数除数的计算法则及应用,也可以先求出3台收割机每小时收割的吨数,再求每台收割机每小时收割小麦的吨数,列式为:6.3÷7÷3。
26.56千米
【解析】
已知甲车每小时行52千米,要求乙车每小时行多少千米,应求出甲乙两车的速度和,根据路程÷相遇时间=速度和,然后用速度和减去甲车的速度,即为所求。
270÷2.5-52
=108-52
=56(千米/时)
答:乙车每小时行56千米。
【点睛】
此题主要考查相遇问题中的基本数量关系:路程÷相遇时间=速度和。
27.(1)0.8吨;(2)13.5元
【解析】
(1)求一条生产线每小时能生产米粉的吨数,用生产米粉的吨数连续除以生产的时间和自动化生产线的条数即可得解;
(2)螺蛳粉的重量是3.3kg,超出部分的重量是(3.3-1)kg,不足1kg按1kg计算,取整数,然后乘2.5即可计算出超出部分收取的费用,再加上1kg以内的费用6元,即是小莉要付的快递费。
(1)9.6÷4÷3
=2.4÷3
=0.8(吨)
答:一条自动化螺蛳粉生产线每小时能生产米粉0.8吨。
(2)3.3-1=2.3(kg)取整千克数3kg。
3×2.5+6
=3×2.5+6
=7.5+6
=13.5(元)
答:小莉要付13.5元的快递费。
【点睛】
此题考查了小数的连除运算和小数的四则运算,难点是分段计费问题,解答此题关键是明确属于按哪一段的收费标准收费。
28.23支
【解析】
用100元减去买笔记本花了的42.5元,求出还剩下多少钱。用剩下的钱除以碳素笔的单价2.5元,求出可以买多少支碳素笔。
(100-42.5)÷2.5
=57.5÷2.5
=23(支)
答:剩下的钱可以买23支碳素笔。
【点睛】
本题考查了经济问题,数量=总价÷单价。
29.99块
【解析】
根据长方形的面积公式:S=ab,求出教室地面的面积,根据正方形的面积公式:S=a2求出正方形地砖的面积,再用地面的面积除以每块地砖的面积,就是需要的地砖的块数。
(块)
答:至少需要99块这样的地砖。
【点睛】
此题主要考查长方形和正方形的面积的计算方法在实际生活中的应用。
30.面包车21辆;小汽车63辆
【解析】
根据售出的小汽车的数量是面包车数量的3倍,设售出面包车x辆,则小汽车为3x辆,根据售出小汽车和面包车共84辆,列方程解答。
解:设这个公司去年第五季度销售的面包车数量为x辆。
x+3x=84
4x=84
4x÷4=84÷4
x=21
84-21=63(辆)
【点睛】
此题属于和倍问题,解题关键是用倍数解设,用和列方程。
31.(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1
解析:(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1)偶数与偶数的和是偶数,据此判断即可;
(2)设大船租了x条,小船租了(18-x)条,再根据划船的同学正好是60人,列出方程解答即可。
(1)不能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)解:设大船租了x条,小船租了(18-x)条。
4x+2(18-x)=60
2x+36=60
2x=24
x=12
小船:18-12=6(条)
答:大船租了12条,小船租了6条。
【点睛】
本题考查奇数与偶数、列方程解决问题,解答本题的关键是掌握列方程解决问题的计算方法。
32.288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面
解析:288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面积是三角形ABC的2倍,据此解答即可。
12×4×3×2=288(cm2)
答:平行四边形ABCD的面积是288cm2。
【点睛】
解题关键是三角形的底扩大到原来的几倍,高不变,面积跟着扩大到相同的倍数。
33.270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
解析:270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
答:这块菜地的面积是270平方米。
【点睛】
本题考查了梯形的面积,梯形面积=(上底+下底)×高÷2。
34.45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
解析:45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
35.1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
解析:1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
36.①平行四边形的底等于梯形的上下底之和;
②平行四边形的高等于梯形高的一半;
③平行四边形的面积等于梯形的面积。
(答案不唯一)
【解析】
根据题意,结合操作,可知:①梯形的上下底之和就是平行四边形的
解析:①平行四边形的底等于梯形的上下底之和;
②平行四边形的高等于梯形高的一半;
③平行四边形的面积等于梯形的面积。
(答案不唯一)
【解析】
根据题意,结合操作,可知:①梯形的上下底之和就是平行四边形的底。②因是将梯形两底对折重合在一条直线上,可以得到:梯形的高的一半等于平行四边形的高。③梯形拼接成平行四边形,只是形状发生了变化,面积没变。
据分析,可以得到如下结论:
①平行四边形的底等于梯形的上下底之和;
②平行四边形的高等于梯形高的一半;
③平行四边形的面积等于梯形的面积。
【点睛】
本题考查了对梯形和平行四边形关系的认识。
37.见详解
【解析】
本题是求梯形的上底,利用梯形的面积公式推导出梯形上底的求法:梯形的上底=梯形的面积×2÷高-下底,本题即可得解。
450×2÷15-40
【点睛】
用梯形上底的求法“梯形的上底=梯
解析:见详解
【解析】
本题是求梯形的上底,利用梯形的面积公式推导出梯形上底的求法:梯形的上底=梯形的面积×2÷高-下底,本题即可得解。
450×2÷15-40
【点睛】
用梯形上底的求法“梯形的上底=梯形的面积×2÷高-下底”,是解答本题的关键。
38.5厘米
【解析】
由图可知,△EFG+梯形BCFG=△BCE,阴影部分+梯形BCFG=平行四边形ABCD,根据阴影部分与△EFG的面积差表示出平行四边形ABCD与阴影部分的面积之差,利用三角形的面积
解析:5厘米
【解析】
由图可知,△EFG+梯形BCFG=△BCE,阴影部分+梯形BCFG=平行四边形ABCD,根据阴影部分与△EFG的面积差表示出平行四边形ABCD与阴影部分的面积之差,利用三角形的面积计算公式计算出△BCE的面积,再求出平行四边形ABCD的面积,最后利用“高=平行四边形的面积÷底”求出FC的长。
分析可知,阴影部分面积-△EFG=12cm2
(阴影部分+梯形BCFG)-(△EFG+梯形BCFG)=12cm2
平行四边形ABCD-△BCE=12cm2
△BCE的面积:8×6÷2
=48÷2
=24(cm2)
平行四边形ABCD的面积:24+12=36(cm2)
FC的长度:36÷8=4.5(厘米)
答:FC长4.5厘米。
【点睛】
分析题意求出平行四边形ABCD的面积是解答题目的关键。
39.75平方厘米
【解析】
把正方形的边长设为未知数,三角形甲的面积=9厘米×正方形的边长,三角形乙的面积=4厘米×正方形的边长,等量关系式:三角形甲的面积+三角形乙的面积=39平方厘米,求出小正方形的
解析:75平方厘米
【解析】
把正方形的边长设为未知数,三角形甲的面积=9厘米×正方形的边长,三角形乙的面积=4厘米×正方形的边长,等量关系式:三角形甲的面积+三角形乙的面积=39平方厘米,求出小正方形的边长最后利用三角形的面积公式求出大三角形的面积,据此解答。
解:设正方形的边长为x厘米。
4x÷2+9x÷2=39
2x+4.5x=39
6.5x=39
x=39÷6.5
x=6
(6+9)×(6+4)÷2
=15×10÷2
=150÷2
=75(平方厘米)
答:大三角形ABC的面积为75平方厘米。
【点睛】
利用方程求出正方形的边长并熟练掌握三角形的面积计算公式是解答题目的关键。
40.【解析】
如图分析,阴影部分的面积等于三角形ABC的面积减去三角形CEG的面积,梯形CFDG的面积等于三角形DEF面积减去三角形CEG的面积,三角形ABC的面积等于三角形DEF的面积,它们减去的都
解析:
【解析】
如图分析,阴影部分的面积等于三角形ABC的面积减去三角形CEG的面积,梯形CFDG的面积等于三角形DEF面积减去三角形CEG的面积,三角形ABC的面积等于三角形DEF的面积,它们减去的都是同一个三角形CEG的面积,所以阴影部分的面积等于梯形CFDG的面积,利用梯形面积公式求出即可。
梯形CFDG的上底=10-3=7厘米;梯形面积列式:
即阴影部分的面积。
答:阴影部分的面积的是
【点睛】
此题的解题关键是把求阴影部分面积转化成求梯形的面积,然后利用面积公式求出即可
展开阅读全文