资源描述
2024年人教版七7年级下册数学期末综合复习试卷附答案
一、选择题
1.如图,与是同旁内角,它们是由( )
A.直线,被直线所截形成的
B.直线,被直线所截形成的
C.直线,被直线所截形成的
D.直线,被直线所截形成的
2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )
A. B. C. D.
3.若点在第二象限,则点在第( )象限
A.一 B.二 C.三 D.四
4.下列命题是假命题的是( )
A.同位角相等,两直线平行
B.三角形的一个外角等于与它不相邻的两个内角的和
C.平行于同一条直线的两条直线平行
D.平面内,到一个角两边距离相等的点在这个角的平分线上
5.将一副三角板按如图放置,如果,则有是( )
A.15° B.30° C.45° D.60°
6.下列语句中正确的是( )
A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是3
7.如图,和相交于点O,则下列结论正确的是( )
A. B. C. D.
8.如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至…依照此规律跳动下去,点第124次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.的算术平方根为_______;
十、填空题
10.已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
十一、填空题
11.若点A(9﹣a,3﹣a)在第二、四象限的角平分线上,则A点的坐标为_____.
十二、填空题
12.如图,直线AB∥CD,OA⊥OB,若∠1=140°,则∠2=_____度.
十三、填空题
13.如图所示是一张长方形形状的纸条,,则的度数为__________.
十四、填空题
14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________.
十五、填空题
15.点关于轴的对称点的坐标是_______.
十六、填空题
16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______.
十七、解答题
17.计算下列各式的值:
(1)|–2|– + (–1)2021;
(2).
十八、解答题
18.求下列各式中的的值.
(1);
(2).
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”.例如:点的“3系置换点”的坐标为,即.
(1)点(2,0)的“2系置换点”的坐标为________;
(2)若点的“3系置换点”的坐标是(-4,11),求点的坐标.
(3)若点(其中),点的“系置换点”为点,且,求的值;
二十一、解答题
21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a.
(1)求a的值;
(2)若a的整数部分为m,小数部分为n,试求式子的值.
二十二、解答题
22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”)
(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.如图1,点在直线上,点在直线上,点在,之间,且满足.
(1)证明:;
(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;
(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.
二十四、解答题
24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
二十五、解答题
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角.
【详解】
解:与是同旁内角,它们是由直线,被直线所截形成的
故选A.
【点睛】
本题考查了同旁内角的含义,熟练掌握含义是解题的关键.
2.B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形
解析:B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形翻折得到,不合题意;
D.选项是原图形旋转得到,不合题意.
故选:B
【点睛】
本题考查了平移的性质,理解平移的定义和性质是解题关键.
3.C
【分析】
应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.
【详解】
解:∵点在第二象限,
∴1+a<0,1-b>0;
∴a<-1, b-1<0,
即点在第三象限.
故选:C.
【点睛】
解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
4.D
【分析】
利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.
【详解】
解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;
B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;
C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;
D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.
5.C
【分析】
根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.
【详解】
解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,
∵,
∴∠1=60°,
∴∠1=∠E,
∴AC∥DE,
∴∠4=∠C=45°.
故选:C.
【点睛】
本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.
6.D
【分析】
根据平方根、立方根、算术平方根的定义逐一进行判断即可.
【详解】
A. 负数没有平方根,故A选项错误;
B. 9的平方根是±3,故B选项错误;
C. 9的立方根是,故C选项错误;
D. 9的算术平方根是3,正确,
故选D.
【点睛】
本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.
7.A
【分析】
根据对顶角的性质和平行线的性质判断即可.
【详解】
解:A、∵和是对顶角,
∴,选项正确,符合题意;
B、∵与OB相交于点A,
∴与OB不平行,
∴,选项错误,不符合题意;
C、∵AO与BC相交于点B,
∴AO与BC不平行,
∴,选项错误,不符合题意;
D、∵OD与BC相交于点C,
∴OD与BC不平行,
∴,选项错误,不符合题意.
故选:A.
【点睛】
此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
∴第124次跳动至点的坐标是(63,62).
故选:A.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答
解析:
【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点.
十、填空题
10.(-3,-1)
【分析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为(-3,-1).
解析:(-3,-1)
【分析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为(-3,-1).
【点睛】
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
十一、填空题
11.(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标
解析:(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标为(3,﹣3).
故答案为:(3,﹣3).
【点睛】
本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.
十二、填空题
12.50
【分析】
先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.
【详解】
∵OA⊥OB,
∴∠O=90°,
∵∠1=∠3+∠O=1
解析:50
【分析】
先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.
【详解】
∵OA⊥OB,
∴∠O=90°,
∵∠1=∠3+∠O=140°,
∴∠3=∠1﹣∠O=140°﹣90°=50°,
∵AB∥CD,
∴∠2=∠3=50°,
故答案为:50.
【点睛】
此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题.
十三、填空题
13.5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=
解析:5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=180°-105°=75°,
∴∠2=(180°-75°)÷2=52.5°,
故答案为:52.5°.
【点睛】
此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.
十四、填空题
14.,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟
解析:,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.
十五、填空题
15.【分析】
根据点关于轴的对称点的坐标的特征,即可写出答案.
【详解】
解:∵点关于轴的对称点为,
∴点的纵坐标与点的纵坐标相同,
点的横坐标是点的横坐标的相反数,
故点的坐标为:,
故答案为:.
解析:
【分析】
根据点关于轴的对称点的坐标的特征,即可写出答案.
【详解】
解:∵点关于轴的对称点为,
∴点的纵坐标与点的纵坐标相同,
点的横坐标是点的横坐标的相反数,
故点的坐标为:,
故答案为:.
【点睛】
本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.
十六、填空题
16.2023
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2
解析:2023
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
则第2022次跳动至点的坐标是(1012,1011),
第2021次跳动至点的坐标是(-1011,1011).
∵点A2021与点A2022的纵坐标相等,
∴点A2021与点A2022之间的距离=1012-(-1011)=2023,
故答案为:2023.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
十七、解答题
17.(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=
解析:(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=3+1-6,
=–2.
【点睛】
本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.
十八、解答题
18.(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或
解析:(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或;
(2),
,
,
,
.
【点睛】
本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1);(2);(3).
【分析】
(1)根据题中新定义直接将m的值代入即可得出答案;
(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;
(3)根据题中新定义可得出点B的坐标,再根据
解析:(1);(2);(3).
【分析】
(1)根据题中新定义直接将m的值代入即可得出答案;
(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;
(3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案.
【详解】
解:(1)点(2,0)的“2系置换点”的坐标为,即;
(2)由题意得:
解得:
点A的坐标为:;
(3)
点为
即点B坐标为
,
为常数,且
.
【点睛】
本题考查了二元一次方程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键.
二十一、解答题
21.(1);(2)1
【分析】
(1)分析图形得到大正方形的面积,从而得到边长a;
(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.
【详解】
解:(1)由题意可得:
,
∵a>0,
∴;
解析:(1);(2)1
【分析】
(1)分析图形得到大正方形的面积,从而得到边长a;
(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.
【详解】
解:(1)由题意可得:
,
∵a>0,
∴;
(2)∵,
∴,
∴m=2,n=,
∴
=
=
=
=1
【点睛】
本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.
二十二、解答题
22.(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的
解析:(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
设大正方形的边长为xcm,
∴ ,
∴
∴大正方形的边长为cm;
(2)设圆的半径为r,
∴由题意得,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵正方形的面积为900cm2,
∴正方形的边长为30cm
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据
解析:(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;
(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.
【详解】
解:(1)如图,连接,
,
,
,
,
(2),
理由:作,则 如图,
设,则.
,,
,,
.
即.
(3)作,则 如图,设,则.
,
,
,
,
,
故答案为.
【点睛】
本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.
二十四、解答题
24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N
解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【详解】
解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】
本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
二十五、解答题
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
展开阅读全文