收藏 分销(赏)

2023年人教版七7年级下册数学期末质量检测(附答案).doc

上传人:天**** 文档编号:1892167 上传时间:2024-05-11 格式:DOC 页数:21 大小:557.54KB
下载 相关 举报
2023年人教版七7年级下册数学期末质量检测(附答案).doc_第1页
第1页 / 共21页
2023年人教版七7年级下册数学期末质量检测(附答案).doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
2023年人教版七7年级下册数学期末质量检测(附答案) 一、选择题 1.如图,已知直线a,b被直线c所截,下列有关与说法正确的是( ) A.与是同位角 B.与是内错角 C.与是同旁内角 D.与是对顶角 2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,假命题的数量为(  ) ①如果两个角的和等于平角,那么这两个角互为补角; ②内错角相等; ③两个锐角的和是锐角; ④如果直线a∥b,b∥c,那么a∥c. A.3 B.2 C.1 D.0 5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( ) A. B. C. D. 6.若a2=16,=2,则a+b的值为(  ) A.12 B.4 C.12或﹣4 D.12或4 7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( ) A. B. C. D. 8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如,,,,,,.根据这个规律探索可得,第2021个点的坐标为( ) A. B. C. D. 九、填空题 9.的算术平方根是_______. 十、填空题 10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______ 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图,,平分,交于,若,则的度数是______°. 十三、填空题 13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________° 十四、填空题 14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______ 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的x值. (1) (2) 十九、解答题 19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A=∠D. 求证:∠B=∠C. 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD( ) ∵∠A=∠D(已知) ∴∠D=_____________(等量代换) ∴____________∥CD( ) ∴∠B=∠C( ) 二十、解答题 20.在平面坐标系中描出下列各点且标该点字母: (1)点,,,; (2)点在轴上,位于原点右侧,距离原点2个单位长度; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度. 二十一、解答题 21.请回答下列问题: (1)介于连续的两个整数和之间,且,那么 , ; (2)是的小数部分,是的整数部分,求 , ; (3)求的平方根. 二十二、解答题 22.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 二十五、解答题 25.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同位角的定义判断即可. 【详解】 解:∠1和∠2是同位角, 故选:A. 【点睛】 本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合. 2.D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 解析:D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.B 【分析】 构建不等式求出m,n的范围可得结论. 【详解】 解:由题意,, 解得:, ∴A(m,n)在第二象限, 故选:B. 【点睛】 此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题. 4.B 【分析】 根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④. 【详解】 根据平角和补角的性质可以判断①是真命题; 两直线平行内错角相等,故②是假命题; 两锐角的和可能是钝角也可能是直角,故③是假命题; 平行于同一条直线的两条直线平行,故④是真命题, 因此假命题有两个②和③, 故选:B. 【点睛】 本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键. 5.A 【分析】 过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案. 【详解】 解:过G作GMAB, ∴∠2=∠5, ∵ABCD, ∴MGCD, ∴∠6=∠4, ∴∠FGC=∠5+∠6=∠2+∠4, ∵FG、CG分别为∠EFG,∠ECD的角平分线, ∴∠1=∠2=∠EFG,∠3=∠4=∠ECD, ∵∠E+2∠G=210°, ∴∠E+∠1+∠2+∠ECD=210°, ∵ABCD, ∴∠ENB=∠ECD, ∴∠E+∠1+∠2+∠ENB=210°, ∵∠1=∠E+∠ENB, ∴∠1+∠1+∠2=210°, ∴3∠1=210°, ∴∠1=70°, ∴∠EFG=2×70°=140°. 故选:A. 【点睛】 此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等. 6.D 【分析】 根据平方根和立方根的意义求出a、b即可. 【详解】 解:∵a2=16, ∴a=±4, ∵=2, ∴b=8, ∴a+b=4+8或﹣4+8, 即a+b=12或4. 故选:D. 【点睛】 本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个. 7.B 【分析】 根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解. 【详解】 解:∵在矩形纸片中,,, , , ∵折叠, ∴, . 故选:B. 【点睛】 本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要. 8.A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详 解析:A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解】 解:把第一个点作为第一列,和作为第二列, 依此类推,则第一列有一个数,第二列有2个数, 第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上. 因为,则第2021个数一定在第64列,由下到上是第5个数. 因而第2021个点的坐标是. 故选:A. 【点睛】 本题考查了坐标与图形,数字类的规律,根据图形得出规律是解此题的关键. 九、填空题 9.. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 解析:. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 十、填空题 10.a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(- 解析:a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4), 点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4), 则a=3,b=-4. 【点睛】 此题考查关于x轴、y轴对称的点的坐标,难度不大 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为 解析:25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为:25. 【点睛】 本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FE 解析:5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=45°,∠B=90°, ∴∠BEF=45°, ∴∠DEC=(180°-45°)=67.5°. 故答案为:67.5. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索, 解析:. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索,解题的关键是根据题意发现规律. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单 解析:(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单位/秒,3单位/秒, 则两个物体每次相遇时间间隔为=4秒, 则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0) ∵2021=4×505…1, ∴第2021次两个物体相遇位置为(0,2), 故答案为:(0,2). 【点睛】 本题考查了平面直角坐标系中点的规律,找到规律是解题的关键. 十七、解答题 17.(1);(2). 【分析】 直接利用立方根以及算术平方根的定义化简得出答案. 【详解】 (1) (2) 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 解析:(1);(2). 【分析】 直接利用立方根以及算术平方根的定义化简得出答案. 【详解】 (1) (2) 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方 解析:(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握. 十九、解答题 19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,( 解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,(对顶角相等) ∴∠2=∠3(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD(两直线平行,同位角相等) ∵∠A=∠D(已知) ∴∠D=∠BFD(等量代换) ∴AB∥CD(内错角相等,两直线平行) ∴∠B=∠C(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后 解析:(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可. 【详解】 解:(1)如图 , (2)∵点在轴上,位于原点右侧,距离原点2个单位长度, ∴点 ; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度, ∴点 . 【点睛】 本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键. 二十一、解答题 21.(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即 解析:(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即可. 【详解】 解:(1)∵16<17<25, ∴4<<5, ∴a=4,b=5, 故答案为:4;5; (2)∵4<<5, ∴6<+2<7, 由此整数部分为6,小数部分为−4, ∴x=−4, ∵4<<5, ∴3<-1<4, ∴y=3; 故答案为:−4;3 (3)当x=−4,y=3时, ==64, ∴64的平方根为±8. 【点睛】 此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法. 二十二、解答题 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 二十五、解答题 25.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再 解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论; (2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论; (3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC. 试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE. ∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD; (2)∠BAE+∠MCD=90°.证明如下: 过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE. ∵∠E=90°,∴∠BAE+∠ECD=90°. ∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°; (3)①∠BAC=∠PQC+∠QPC.理由如下: 如图3:∵AB∥CD,∴∠BAC+∠ACD=180°. ∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC; ②∠PQC+∠QPC+∠BAC=180°.理由如下: 如图4:∵AB∥CD,∴∠BAC=∠ACQ. ∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°. 点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服