1、八年级数学上学期压轴题质量检测试卷含答案1已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,且(1) _,_;直线与的位置关系是_;(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由2已知:AD为ABC的中线,分别以AB和AC为一边在ABC的外部作等腰三角形ABE和等腰三角形ACF,且AEAB,AFAC,连接EF,EAF+BAC180(1)如图1,若ABE65,ACF
2、75,求BAC的度数(2)如图1,求证:EF2AD(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且BAE60,请探究GAF和CAF的数量关系,并证明你的结论3(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;4已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+
3、b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论5如图,ACB和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数(2)如图2,若ACBDCE90,CF为DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论6阅读理解题:定义:如果一个数的平方等于1,记为i21,这个数i叫做虚数单位,把形如a+bi(a,b为
4、实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;根据以上信息,完成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)已知a+bi(a,b为实数),求的最小值7如图1,在平面直角坐标系中,且ACB90,ACBC(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,
5、NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰RtBDG,且BDDG,BDG90,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论8如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且(1)直接写出的度数(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值【参考答案】2(1)30,30,AB/CD;(2)+=180,证明见解析;(3)不
6、变,【分析】(1)利用非负数的性质可知:=40,推出EMF=MFN即可解决问题;(2)结论:FMN+解析:(1)30,30,AB/CD;(2)+=180,证明见解析;(3)不变,【分析】(1)利用非负数的性质可知:=40,推出EMF=MFN即可解决问题;(2)结论:FMN+GHF=180只要证明GHPN即可解决问题;(3)结论:的值不变,=2如图3中,作PEM1的平分线交M1Q的延长线于R只要证明R=FQM1,FPM1=2R即可;【详解】解:(1),60-2=0,-30=0,=30,PFM=MFN=30,EMF=30,EMF=MFN,ABCD;(2)结论:FMN+GHF=180,理由如下:如图
7、2中, ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,=2理由如下:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题3(1)BAC
8、50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解解析:(1)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解决问题;(2)延长AD至H,使DHAD,连接BH,想办法证明ABHEAF即可解决问题;(3)结论:GAFCAF60想办法证明ACDFAG,推出ACDFAG,再证明BCF150即可(1)解:AEAB,AEBABE65,EAB50,ACAF,ACFAFC75,CAF30,EAF+BAC180,
9、EAB+2ABC+FAC180,50+2BAC+30180,BAC50(2)证明:证明:如图,延长AD至点H,使DH=AD,连接BHAD是ABC的中线,BD=DC,又DH=AD,BDH=ADCADCHDB(SAS),BH=AC,BHD=DAC,BH=AF,BHD=DAC,BHAC,BAC+ABH=180,又EAF+BAC=180,ABH=EAF,又AB=AE,BH=AF,AEFBAH(SAS),EF=AH=2AD,EF2AD;(3)结论:GAFCAF60理由:由(2)得,ADEF,又点G为EF中点,EGAD,由(2)AEFBAH,AEG=BAD,在EAG和ABD中,EAGABD,EAGABC6
10、0,AG=BD,AEB是等边三角形,AG=CD,ABE60,CBM60,在ACD和FAG中,ACDFAG,ACDFAG,ACAF,ACFAFC,在四边形ABCF中,ABC+BCF+CFA+BAF360,60+2BCF360,BCF150,BCA+ACF150,GAF+(180CAF)150,GAFCAF60【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题4(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定AB
11、EADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG
12、,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等5(1)A(0,2),B(-2,0);H(0
13、,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y解析:(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,
14、OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,AC=DC,CEACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOC
15、G=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题6(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=E
16、C”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解】(1)证明:CABCBACDECED50,ACBDCE18025080,ACBACD+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一
17、直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBECCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键7(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条解析:(1)i,1,;(2
18、)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1)i3i2i1ii,i4i2i21(1)1,设Si+i2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可以看作点(x,0)到点A(0,4),B(24
19、,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为25【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键8(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CT解析:(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CTBH2,可得结论;(2)结论:MNME+NF证明BFNBEK
20、(SAS),推出BNBK,FBNEBK,再证明BMNBMK(SAS),推出MNMK,可得结论;(3)结论:DHCH,DHCH如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点M证明JDC是等腰直角三角形,可得结论【详解】解:(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点HA(0,4),C(2,2),OA4,OTCT2,AT4+26,ACBATCH90,CAT+ACT90,BCH+CBH90,CATBCH,CACB,ATCCHB(AAS),ATCH6,CTBH2,THCHCT4,B(4,-4);(2)结论:MNME+NF理由:在射线OE上截取EK
21、FN,连接BKB(4,4),BEy轴,BFx轴,BEBF4,BEOBFOEOF90,四边形BEOF是矩形,EBF90,EKFN,BFNBEK90,BFNBEK(SAS),BNBK,FBNEBK,NBKFBE90,MBN45,MBNBMK45,BMBM,BMNBMK(SAS),MNMK,MKME+EK,MNEM+FN;(3)结论:DHCH,DHCH理由:如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点MAHHG,AHJGHD,HJHD,AHJGHD(SAS),AJDG,AJHDGH,AJDM,JACAMD,DGBD,AJBD,MCBBDM90,CBD+CMD180,AMD
22、+CMD180,AMDCBD,CAJCBD,CACB,CAJCBD(SAS),CJCD,ACJBCD,JCDACB90,JHHD,CHDJ,CHJHHD,即CHDH,CHDH【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题9(1);(2);(3)【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明解析:(1);(2);(3)【分析】(1)根据坐标系写出的坐标,进而根据,
23、因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F作轴交CB的延长线于点N,证明,设,则等边三角形ABC的边长是4a,进而计算可得,即可求得的值【详解】(1)点在x轴负半轴上,如答图1,在x轴的正半轴上取点C,使,连接BC,又,是等边三角形,;(2)如答图2,连接BM,是等边三角形,D为AB的中点,在和中,即,为等边三角形,;(3)如答图3,过点F作轴交CB的延长线于点N,则,在和中,又E是OC的中点,设,等边三角形ABC的边长是4a,在和中,又,【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键