资源描述
人教版中学七年级下册数学期末综合复习试卷附答案
一、选择题
1.下列图形中,有关角的说法正确的是( )
A.∠1与∠2是同位角 B.∠3与∠4是内错角
C.∠3与∠5是对顶角 D.∠4与∠5相等
2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A. B. C. D.
3.若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(3,4)
4.下列命题是假命题的是( )
A.对顶角相等
B.两条直线被第三条直线所截,同位角相等
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行
5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( )
A. B. C.或 D.或
6.如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为( )
A.﹣10 B.﹣﹣10 C.2 D.﹣2
7.如图,已知直线,点为直线上一点,为射线上一点.若,,交于点,则的度数为( )
A.45° B.55° C.60° D.75°
8.一只青蛙在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2021次跳到点( )
A.(6,45) B.(5,44) C.(4,45) D.(3,44)
九、填空题
9.的算术平方根是___.
十、填空题
10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.
十一、填空题
11.若点A(9﹣a,3﹣a)在第二、四象限的角平分线上,则A点的坐标为_____.
十二、填空题
12.如图,∠ABC与∠DEF的边BC与DE相交于点G,且BA//DE,BC//EF,如果∠B=54°,那么∠E=__________.
十三、填空题
13.把一张长方形纸条按如图所示折叠后,若,则_______;
十四、填空题
14.按下面的程序计算:
若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.
十五、填空题
15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________.
十六、填空题
16.如图,点,,,,,……根据这个规律,探究可得点的坐标是________.
十七、解答题
17.计算题
(1). (2);
十八、解答题
18.求下列各式中的x:
(1); (2); (3).
十九、解答题
19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC.
证明:∵∠1+∠2=180°,∠2+∠AED=180°,
∴∠1=∠AED( ),
∴AC ( ),
∴∠D=∠DAF( ).
∵∠C=∠D,
∴∠DAF= (等量代换).
∴ADBC( ).
二十、解答题
20.与在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: ; ; ;
(2)说明由经过怎样的平移得到?答:_______________.
(3)若点是内部一点,则平移后内的对应点的坐标为_________;
(4)求的面积.
二十一、解答题
21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分.
请解答下列问题:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b-的值;
(3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.如图,用两个边长为10的小正方形拼成一个大的正方形.
(1)求大正方形的边长?
(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?
二十三、解答题
23.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
二十四、解答题
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
二十五、解答题
25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角、内错角、对顶角的定义判断即可求解.
【详解】
A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;
B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;
C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;
D、∠4与∠5不相等,原说法错误,故此选项不符合题意;
故选:C.
【点睛】
本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到.
故选C.
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.A
【分析】
根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.
【详解】
点P在x轴的下方,y轴的右方,
点P在第四象限,
又点P到x轴、y轴的距离分别是3和4,
点P的横坐标是4,纵坐标是-3,
即点P的坐标为,
故选:A.
【点睛】
本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4.B
【分析】
根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.
【详解】
A、对顶角相等;真命题;
B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;
C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;
D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;
故选:B.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.
5.D
【分析】
分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.
【详解】
解:当点D在线段AB上时,如图1所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE+∠CDE=84°+20°=104°;
当点D在线段AB的延长线上时,如图2所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE-∠CDE=84°-20°=64°.
综上所述:∠ADC=104°或64°.
故选:D.
【点睛】
本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.
6.D
【分析】
先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根.
【详解】
根据图象:直角三角形两边长分别为2和1,
∴
∴x在数轴原点左面,
∴,
则,
则它的立方根为;
故选:D.
【点睛】
本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数.
7.C
【分析】
利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小.
【详解】
解:,
,
,
,
,,
,
,
,
,
故选:.
【点睛】
本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.
8.D
【分析】
根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次
解析:D
【分析】
根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.
【详解】
解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.
2025-1-3=2021,
故第2021次时青蛙所在位置的坐标是(3,44).
故选:D.
【点睛】
此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.
九、填空题
9.【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:的算术平方根是:.
故答案为:.
【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键.
解析:
【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:的算术平方根是:.
故答案为:.
【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键.
十、填空题
10.【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴
解析:
【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴的对称点为,则点P的纵坐标为1
点关于轴的对称点为,则点P的横坐标为2
则点P的坐标为
故答案为:.
【点睛】
本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.
十一、填空题
11.(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标
解析:(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标为(3,﹣3).
故答案为:(3,﹣3).
【点睛】
本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.
十二、填空题
12.126°
【分析】
根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.
【详解】
BA//DE,BC//EF,
,
∠B=54°,
,
故答案为:126°.
【点睛】
本题考查
解析:126°
【分析】
根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.
【详解】
BA//DE,BC//EF,
,
∠B=54°,
,
故答案为:126°.
【点睛】
本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键.
十三、填空题
13.55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,
解析:55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°,
∴∠BOG+∠B′OG=180°-70°=110°.
∵∠B′OG由∠BOG翻折而成,
∴∠BOG=∠B′OG,
∴∠BOG= =55°.
∵AB∥CD,
∴∠OGD=∠BOG=55°.
故答案为:55°.
【点睛】
本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键.
十四、填空题
14.131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
解析:131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
十五、填空题
15.(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐
解析:(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐标为(-4,3)
故答案为:(-4,3) .
【点睛】
本题考查点的坐标,利用数形结合思想解题是关键.
十六、填空题
16.【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、
解析:
【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,
,
故点坐标是.
故答案是:.
【点睛】
本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.
十七、解答题
17.(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
解析:(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.
十八、解答题
18.(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2
解析:(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2)
∴
∴
∴;
(3),
∴,
∴,
∴.
【点睛】
本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.
十九、解答题
19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,内错角相等),
,
(等量代换),
(同位角相等,两直线平行).
故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
二十、解答题
20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对
解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对应点A、A′的变化写出平移方法即可;
(3)根据平移规律逆向写出点P′的坐标;
(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
【详解】
解:(1)A′(-3,1); B′(-2,-2);C′(-1,-1);
(2)向左平移4个单位,向下平移2个单位;
(3)若点P(a,b)是△ABC内部一点,
则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);
(4)△ABC的面积==2.
【点睛】
本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.
二十一、解答题
21.(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解
解析:(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解】
(1),
的整数部分为3,小数部分为;
(2),
的整数部分为2,小数部分为,
,
,
的整数部分为3,
,
;
(3),
的整数部分为1,小数部分为,
10+=x+y,其中x是整数,且0<y<1,
,
的相反数是:.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
二十二、解答题
22.(1)大正方形的边长是;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是
(2)设长方形纸
解析:(1)大正方形的边长是;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是
(2)设长方形纸片的长为3xcm,宽为2xcm,
则3x•2x=480,
解得:x=
因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
二十三、解答题
23.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
二十四、解答题
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
二十五、解答题
25.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠DCE=BCD,
∵∠BCD=70°,
∴∠DCE=35°,
∵l2∥l3,
∴∠CED=∠DCE=35°,
∵l2⊥l1,
∴∠CAD=90°,
∴∠ADC=90°﹣70°=20°;
故答案为:35,20;
(3)∵CF平分∠BCD,
∴∠BCF=∠DCF,
∵l2⊥l1,
∴∠CAD=90°,
∴∠BCF+∠AGC=90°,
∵CD⊥BD,
∴∠DCF+∠CFD=90°,
∴∠AGC=∠CFD,
∵∠AGC=∠DGF,
∴∠DGF=∠DFG;
(4)∠N:∠BCD的值不会变化,等于;理由如下:
∵l2∥l3,
∴∠BED=∠EBH,
∵∠DBE=∠DEB,
∴∠DBE=∠EBH,
∴∠DBH=2∠DBE,
∵∠BCD+∠BDC=∠DBH,
∴∠BCD+∠BDC=2∠DBE,
∵∠N+∠BDN=∠DBE,
∴∠BCD+∠BDC=2∠N+2∠BDN,
∵DN平分∠BDC,
∴∠BDC=2∠BDN,
∴∠BCD=2∠N,
∴∠N:∠BCD=.
【点睛】
本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.
展开阅读全文