资源描述
人教版中学七年级下册数学期末质量检测试卷(附答案)
一、选择题
1.的平方根是()
A. B. C.± D.±
2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )
A. B. C. D.
3.平面直角坐标系中,点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( )
A.① B.①② C.①③ D.①②③④
5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( )
A.30° B.40° C.60° D.70°
6.下列等式正确的是( )
A. B. C. D.
7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )
A.90° B.75° C.65° D.60°
8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( )
A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0)
九、填空题
9.比较大小,请在横线上填“>”或“<”或“=”________.
十、填空题
10.在平面直角坐标系中,若点和点关于轴对称,则____.
十一、填空题
11.若在第一、三象限的角平分线上,与的关系是_________.
十二、填空题
12.如图,AD//BC,,则____度.
十三、填空题
13.如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为______.
十四、填空题
14.任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________.
十五、填空题
15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.
十六、填空题
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
十七、解答题
17.(1)计算:;
(2)解方程组:.
十八、解答题
18.求下列各式中的x值:
(1)25x2-64=0
(2)x3-3=
十九、解答题
19.如图,已知,,,求证:平分.
证明:, (已知)
(垂直的定义)
( )
( )
(两直线平行,同位角相等)
又(已知)
( )
平分(角平分线的定义)
二十、解答题
20.与在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: ; ; ;
(2)说明由经过怎样的平移得到?答:_______________.
(3)若点是内部一点,则平移后内的对应点的坐标为_________;
(4)求的面积.
二十一、解答题
21.计算:
(1); (2)﹣12+(﹣2)3×;
(3)已知实数a、b满足+|b﹣1|=0,求a2017+b2018的值.
(4)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.
二十二、解答题
22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
二十四、解答题
24.如图1,,在、内有一条折线.
(1)求证:;
(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;
(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系.
二十五、解答题
25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义开平方求解即可;
【详解】
解:∵,
∴的平方根是;
故答案选C.
【点睛】
本题主要考查了平方根的计算,准确计算是解题的关键.
2.C
【分析】
根据平移变换的定义可得结论.
【详解】
解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.
故选:C.
【点睛】
本题考查利用平移设计图案,解题的关键是理解平移变换
解析:C
【分析】
根据平移变换的定义可得结论.
【详解】
解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.
故选:C.
【点睛】
本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题.
3.D
【分析】
根据点在各象限的坐标特点即可得答案.
【详解】
∵点的横坐标2>0,纵坐标-3<0,
∴点所在的象限是第四象限,
故选:D.
【点睛】
本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断.
【详解】
解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;
②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;
③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;
④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5.A
【分析】
过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
,
,
,
故选:A.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.
6.C
【分析】
根据算术平方根、立方根的定义计算即可
【详解】
A、负数没有平方根,故错误
B、表示计算算术平方根,所以,故错误
C、,故正确
D、,故错误
故选:C
【点睛】
本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键
7.B
【分析】
根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.
【详解】
解:如图,
∵EF∥BC,
∴∠FDC=∠F=30°,
∴∠1=∠FDC+∠C=30°+45°=75°,
故选:B.
【点睛】
本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P1秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
可得移动4次图象完成一个循环,
∵2021÷4=505…1,
∴点P运动到2021秒时的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
九、填空题
9.=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌
解析:=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.
十、填空题
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
十一、填空题
11.a=b.
【详解】
根据第一、三象限的角平分线上的点的坐标特征,易得a=b.
解析:a=b.
【详解】
根据第一、三象限的角平分线上的点的坐标特征,易得a=b.
十二、填空题
12.52
【分析】
根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得.
【详解】
,
,
,
,
,
.
故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,
解析:52
【分析】
根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得.
【详解】
,
,
,
,
,
.
故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.
十三、填空题
13.111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
解析:111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
∴
∴
故答案为:111°.
【点睛】
本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.
十四、填空题
14.255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作
解析:255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作后变为1,
∵,,,
∴对255只需进行3次操作后变为1,
从后向前推,找到需要4次操作得到1的最小整数,
∵,, , ,
∴对256只需进行4次操作后变为1,
∴只需进行3次操作后变为1的所有正整数中,最大的是255,
故答案为:3,255.
【点睛】
本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.
十五、填空题
15.或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点
解析:或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点B的坐标为或.
故答案为:或.
【点睛】
本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.
十六、填空题
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
十七、解答题
17.(1);(2).
【解析】
【分析】
(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;
(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;
【
解析:(1);(2).
【解析】
【分析】
(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;
(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;
【详解】
(1)解:原式=;
(2)原方程组可化为:
,
(1)×2−(2)得:−7y=−7,
解得:y=1;
把y=1代入(1)得:x−3×1=−2,
解得:x=1,
故方程组的解为: ;
【点睛】
本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.
十八、解答题
18.(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可
解析:(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.
【详解】
解:(1)∵25x2-64=0,
∴25x2=64,
则x2=,
∴x=±;
(2)∵x3-3=,
∴x3=,
则x=.
故答案为:(1)x=;(2)x=.
【点睛】
本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.
十九、解答题
19.见解析
【分析】
应用平行线的判定与性质进行求解即可得出答案.
【详解】
解:证明:∵DE⊥BC,AB⊥BC(已知),
∴∠DEC=∠ABC=90°(垂直的定义).
∴DE∥AB(同位角相等,两直线
解析:见解析
【分析】
应用平行线的判定与性质进行求解即可得出答案.
【详解】
解:证明:∵DE⊥BC,AB⊥BC(已知),
∴∠DEC=∠ABC=90°(垂直的定义).
∴DE∥AB(同位角相等,两直线平行).
∴∠2=∠3(两直线平行,内错角相等),
∠1=∠A(两直线平行,同位角相等).
又∵∠A=∠3(已知),
∴∠1=∠2(等量代换).
∴DE平分∠CDB(角平分线的定义).
【点睛】
本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.
二十、解答题
20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对
解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对应点A、A′的变化写出平移方法即可;
(3)根据平移规律逆向写出点P′的坐标;
(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
【详解】
解:(1)A′(-3,1); B′(-2,-2);C′(-1,-1);
(2)向左平移4个单位,向下平移2个单位;
(3)若点P(a,b)是△ABC内部一点,
则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);
(4)△ABC的面积==2.
【点睛】
本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.
二十一、解答题
21.(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平
解析:(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;
直接利用2<的范围进而得出a,b的值,即可得出答案.
【详解】
解:
;
;
,
,,
;
的整数部分为a,的小数部分为b,
,,
.
【点睛】
此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.
二十二、解答题
22.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】
(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】
考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
二十四、解答题
24.(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过
解析:(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过点作,
∵,
∴,
∴,,
又∵,
∴;
(2)如图2,
由(1)可得:,,
∵的平分线与的平分线相交于点,
∴
,
∴;
(3)由(2)可得:,,
∵,,
∴
,
∴;
【点睛】
考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.
二十五、解答题
25.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.
展开阅读全文