1、初二数学上册期末检测试题附解析(一)一、选择题1下列4个图形中,既是中心对称图形又是轴对称图形的是()ABCD2第五代蜂窝移动通信技术简称5C,是具有高速率、低时延和大连接特点的新代宽带移动通信技术,是实现人机物互联的网络基础设施据媒体报道,5C网络的理论下载速度为1.25GB/s,这就意味着我们下载张25M的照片只需要0.02,将0.002用科学记数法表()A210-2B210-3C0.210-2D0.210-33若,则()A5B6C7D124要使分式有意义,则x的取值范围是()ABCD5下列等式从左到右的变形,属于因式分解的是()ABCD6已知,则下列说法错误的是()ABCD7在ABC和A
2、BC中,AB=AB,B=B,补充条件后仍不一定能保证ABCABC,则补充的这个条件是()AACACBAACBCBCDCC8若关于x的分式方程的解是非负数,则b的取值范围是()ABC且 D且9如图所示,在中,DE垂直平分AB,交BC于点E若则()A3cmB4cmC5cmD10cm10如图,在四边形ABCD中,ABAD,B+ADC180,E、F分别是边BC、CD延长线上的点,EAFBAD,若DF1,BE5,则线段EF的长为()A3B4C5D6二、填空题11当a_时,分式的值是0.12在平面直角坐标系中,作点关于轴的对称点,得到点,再将点向右平移3个单位,得到点,则点的坐标为_13小刚和小丽从家到运
3、动场的路程都是,其中小丽走的是平路,骑车速度是小刚需要走上坡路和的下坡路,在上坡路上的骑车速度是,在下坡路上的骑车速度是如果他们同时出发,那么早到的人比晚到的人少用_(结果化为最简)14计算_15如图,点E在等边ABC的边BC上,BE12,射线CDBC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF14,则AC的长为 _16若二次三项式是完全平方式,则m的值为_17若,则的值是_18如图,在四边形ABCD中,DABABC,AB5cm,ADBC3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动设运动时间为t(s)
4、,当ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 _cm/s三、解答题19分解因式:(1)a416(2)3m(mn)6n(mn)20解方程:21如图,点是上的一点,交于点,点是的中点,求证:22问题引入:(1)如图1,在ABC中,点O是ABC和ACB平分线的交点,若A,则BOC (用表示);如图2,COBABC,BCOACB,A,则BOC (用表示);拓展研究:(2)如图3,CBODBC,BCOECB,A,求BOC的度数(用表示),并说明理由;(3)BO、CO分别是ABC的外角DBC、ECB的n等分线,它们交于点O,CBO,BCOECB,A,请猜想BOC (直接写出答案)23现
5、有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?24【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为的正方形,乙种纸片是边长为的正方形,丙种纸片是长为,宽为的长方形,并用甲种纸片一张,
6、乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式【拓展升华】(2)利用(1)中的等式解决下列问题已知,求的值;已知,求的值25请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想
7、P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 26如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45【参考答案】一、选择题2B解析:B【分析】根据轴对称图形与中
8、心对称图形的概念依次分析求解【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意故选B【点睛】本题考查中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3B解析:B【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为a10-n(1|a| 10, n为正整数)的形式,指数n由原数左边起第一个不为
9、零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n就是负几【详解】解:0.002=2 10-3,故选:B【点睛】此题主要考查了用科学记数法表示绝对值小于1的数, 一般形式为a10-n(1|a|,-=,故答案为.【点睛】本题考查列代数式以及分式的加减正确的列出代数式是解决问题的关键.15-2【分析】逆用积的乘方运算法则进行计算即可【详解】解:【点睛】本题主要考查了积的乘方公式的逆用,熟练掌握,是解题的关键1620【分析】如图,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,B=60,再由直角三角
10、形的性质解析:20【分析】如图,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,B=60,再由直角三角形的性质可得BG=2BF=28,从而得到CE=CG=8,即可求解【详解】解:如图,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,ABC是等边三角形,AC=BC,B=60,GFAB,G=30,BG=2BF=28,BE12,EG=16,CE=CG=8,AC=BC=BE+CE=20故答案为:20【点睛】本题主要考查了轴对称图形的性质最短路线问题,等边三
11、角形的性质,直角三角形的性质,正确作出图形是解题的关键179或-7【分析】根据完全平方式的特点解答【详解】解:二次三项式是完全平方式,解得m=9或-7,故答案为:9或-7【点睛】此题考查了完全平方式,熟记完全平方式并掌握其解析:9或-7【分析】根据完全平方式的特点解答【详解】解:二次三项式是完全平方式,解得m=9或-7,故答案为:9或-7【点睛】此题考查了完全平方式,熟记完全平方式并掌握其构成特点是解题的关键1814【分析】根据即可求得其值【详解】解:,故答案为:14【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键解析:14【分析】根据即可求得其值【详解】解:,
12、 故答案为:14【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键19或【分析】根据题意可得当和时两种情况讨论,然后根据全等三角形对应边相等分别列出方程求解即可【详解】解:设点F的运动速度为x m/s,由题意可得,当时,解得解析:或【分析】根据题意可得当和时两种情况讨论,然后根据全等三角形对应边相等分别列出方程求解即可【详解】解:设点F的运动速度为x m/s,由题意可得,当时,解得:,此时点F的运动速度为1m/s;当时,解得:,此时点F的运动速度为m/s;故答案为:1 或 【点睛】此题考查了三角形全等的判定和性质,几何动点问题,解题的关键是根据题意分情况讨论,分别
13、根据全等三角形的性质列出方程求解三、解答题20(1)(a24)(a2)(a2)(2)3(mn)(m2n)【分析】(1)根据平方差公式因式分解即可;(2)提公因式,根据提公因式法因式分解即可(1)解:a416(a2解析:(1)(a24)(a2)(a2)(2)3(mn)(m2n)【分析】(1)根据平方差公式因式分解即可;(2)提公因式,根据提公因式法因式分解即可(1)解:a416(a24)(a2)(a2)(2)解:3m(mn)6n(mn)3(mn)(m2n)【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键21分式方程无解【分析】先去分母化为整式方程,解整式方程并检验即可【详解】解:去分母
14、得:,解得:,经检验是增根,分式方程无解【点睛】此题考查了解分式方程,正确掌握解分式方程解析:分式方程无解【分析】先去分母化为整式方程,解整式方程并检验即可【详解】解:去分母得:,解得:,经检验是增根,分式方程无解【点睛】此题考查了解分式方程,正确掌握解分式方程的步骤及法则是解题的关键22见解析【分析】根据,可得,进而根据点是的中点,可得即可判断【详解】证明:点是的中点,【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键解析:见解析【分析】根据,可得,进而根据点是的中点,可得即可判断【详解】证明:点是的中点,【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解
15、题的关键23(1),(2),理由见解析(3)【分析】(1)如图1,根据角平分线的定义可得OBC=ABC,OCB=ACB,然后表示出OBC+OCB,再根据三角形的内角和等于180列式整理解析:(1),(2),理由见解析(3)【分析】(1)如图1,根据角平分线的定义可得OBC=ABC,OCB=ACB,然后表示出OBC+OCB,再根据三角形的内角和等于180列式整理即可得BOC=90+;如图2,根据三角形的内角和等于180列式整理即可得BOC=120+;(2)如图3,根据三角形的内角和等于180列式整理即可得BOC=120;(3)根据三角形的内角和等于180列式整理即可得BOC=(1)如图1,ABC
16、与ACB的平分线相交于点O,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB),在OBC中,BOC=180(OBC+OCB)=180(ABC+ACB)=180(180A)=90+A=90+;如图2,在OBC中,BOC=180(OBC+OCB)=180(ABC+ACB)=180(180A)=120+A=120+;(2)如图3,在OBC中,BOC=180(OBC+OCB)=180(DBC+ECB)=180(A+ACB+A+ABC)=180(A+180)=120;(3)在OBC中,BOC=180(OBC+OCB)=180(DBC+ECB)=180(A+ACB+A+ABC)=180(A
17、+180)=【点睛】此题考查了三角形内角和定理,角平分线的性质,解题关键在于掌握内角和定理,以及几何图形中角度的计算24(1)A商品每件20元,则B商品每件50元(2)见解析【分析】(1)设A商品每件x元,则B商品每件(30+x)元,根据“160元全部购买A商品的数量与用400元全部购买B商品的数量相同”列方解析:(1)A商品每件20元,则B商品每件50元(2)见解析【分析】(1)设A商品每件x元,则B商品每件(30+x)元,根据“160元全部购买A商品的数量与用400元全部购买B商品的数量相同”列方程求解可得;(2)设购买A商品a件,则购买B商品共(10-a)件,列不等式组:30020a+5
18、0(10-a)380,解之求出a的整数解,从而得出答案(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元(2)设购买A商品a件,则购买B商品共(10-a)件,列不等式组:30020a+50(10-a)380,解得:4a6.7,a取整数:4,5,6有三种方案:A商品4件,则购买B商品6件;费用:420+650=380,A商品5件,则购买B商品5件;费用:520+550=350,A商品6件,则购买B商品4件;费用:620+450=320,所以方案费用最低【点睛】本题主要考查分式方程与不等式组的应用,解题的关键是理
19、解题意,找到题目蕴含的相等关系与不等关系,并据此列出方程和不等式组25(1);(2)13;4044【分析】(1)方法一是直接求出阴影部分面积,方法二是间接求出阴影部分面积,即为边的正方形面积减去两个为宽、为长的矩形面积,即;(2)将,代入上题所得的等量解析:(1);(2)13;4044【分析】(1)方法一是直接求出阴影部分面积,方法二是间接求出阴影部分面积,即为边的正方形面积减去两个为宽、为长的矩形面积,即;(2)将,代入上题所得的等量关系式求值;可以将看作,将看作,代入(1)题的等量关系式求值即可【详解】(1)(2)由题意得:,把,代入上式得:由题意得:【点睛】本题考查完全平方公式的几何背景
20、及应用此题为阅读材料型,也是近几年经常考查的题型,熟练掌握完全平方公式并根据条件特点灵活应用是解决此题的关键26(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方解析:(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,
21、由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D
22、;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y
23、+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问
24、题,属于中考常考题型27(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键