收藏 分销(赏)

人教版数学八年级上学期期末模拟综合检测试卷附答案.doc

上传人:精*** 文档编号:1886372 上传时间:2024-05-11 格式:DOC 页数:21 大小:1.04MB
下载 相关 举报
人教版数学八年级上学期期末模拟综合检测试卷附答案.doc_第1页
第1页 / 共21页
人教版数学八年级上学期期末模拟综合检测试卷附答案.doc_第2页
第2页 / 共21页
人教版数学八年级上学期期末模拟综合检测试卷附答案.doc_第3页
第3页 / 共21页
人教版数学八年级上学期期末模拟综合检测试卷附答案.doc_第4页
第4页 / 共21页
人教版数学八年级上学期期末模拟综合检测试卷附答案.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、人教版数学八年级上学期期末模拟综合检测试卷附答案一、选择题1下列图形中,既是中心对称图形又是轴对称图形的是()ABCD2第五代蜂窝移动通信技术简称5C,是具有高速率、低时延和大连接特点的新代宽带移动通信技术,是实现人机物互联的网络基础设施据媒体报道,5C网络的理论下载速度为1.25GB/s,这就意味着我们下载张25M的照片只需要0.02,将0.002用科学记数法表()A210-2B210-3C0.210-2D0.210-33下列运算正确的是()A(2ab2)38a2b6B3ab+2b5abC(x2)(2x)38x5D2m(m23mn)2m36m2n4无论a取何值,下列分式总有意义的是()ABC

2、D5下列等式从左到右的变形,是因式分解的是()Aa(x+y)ax+ayB2a(b+c)3(b+c)(2a3)(b+c)C15x53x2x5Da2+2a+1a(a+2)+16下列各式从左到右的变形一定正确的是()ABCD7如图,在ABC与ADC中,若,则下列条件不能判定ABC与ADC全等的是()ABCD8数k使关于x的方程的解是整数,且k使一次函数的图象不经过第三象限,则满足条件的所有整数k的值的和是()A0BCD9我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式,例如图甲可以用来解释那么通过图乙面积的计算,验证了一个恒等式,此等式是()ABCD10如图,在和

3、中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D1二、填空题11当x_时,分式的值为零12点P1()与P2()关于轴对称,则=_13已知,则实数A-B=_.14已知,则_15如图,在等边中,是的平分线,点是的中点,点是上的一个动点,连接,当的值最小时,的度数为_16如果是一个完全平方式,则的值是_17如图,四边形ABCD,BP、CP分别平分、,写出、之间的数量关系_18如图,已知在四边形中,厘米,厘米,厘米,点为线段的中点如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动当点的运动速度为_厘米/秒时,能够使与以,三点所构成的三角形全等三、解答

4、题19因式分解(1)x2y4y(2)2x212x1820解分式方程:(1);(2)21已知:如图,C为线段BE上一点,ABDC,ABEC,BCCD求证:ACDE22(1)如图1,求证:(2)如图2,、的二等分线(即角平分线)BF、CF交于点F已知,求BFC的度数;(3)如图3,、分别为、的2021等分线(i1,2,3,2019,2020)它们的交点从上到下依次为、已知,则_度23在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,求降价后每枝玫瑰的售价是多少元?24阅读下列材

5、料,然后解答问题:问题:分解因式:.解答:把代入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出,的值.再代入,就容易分解多项式,这种分解因式的方法叫做“试根法”.(1)求上述式子中,的值;(2)请你用“试根法”分解因式:.25如图,在等边ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O(1)填空:BOC 度;(2)如图,以CO为边作等边OCF,AF与BO相等吗?并说明理由;(3)如图,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由26等腰RtABC中,BAC=90,AB=AC,点A、点B分别是y轴、x轴上两个动点,

6、直角边AC交x轴于点D,斜边BC交y轴于点E(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;(2)如图(2),当等腰RtABC运动到使点D恰为AC中点时,连接DE求证:ADB=CDE;(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度【参考答案】一、选择题2A解析:A【分析】根据中心对称图形和轴对称图形的定义逐一分析即可【详解】解:A.既是中心对称图形又是轴对称图

7、形,符合题意;B.是轴对称图形但不是中心对称图形,不符合题意;C.是轴对称图形但不是中心对称图形,不符合题意;D.是中心对称图形但不是轴对称图形,不符合题意;故选:A【点睛】本题主要考查了中心对称图形和轴对称图形的定义,理解并熟记定义是解答本题的关键3B解析:B【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为a10-n(1|a| 10, n为正整数)的形式,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n就是负几【详解】解:0.002=2 10-3,故选:B【点睛】此题主要考查了用科学记数法表示绝对值小于1的数, 一般形式

8、为a10-n(1|a| 10, n为正整数), n为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键4D解析:D【分析】根据积的乘方与幂的乘方法则、合并同类项法则、单项式乘单项式乘法法则、单项式乘多项式乘法法则解决此题【详解】解:A根据积的乘方与幂的乘方,(2ab2)38a3b6,故A不符合题意B根据合并同类项法则,3ab+2b无法合并,故B不符合题意C根据积的乘方以及单项式乘单项式的乘法法则,(x2)(2x)3x2(8x3)8x5,故C不符合题意D根据整式的混合运算法则,2m(m23mn)2m36m2n,故D符合题意故选:D【点睛】

9、本题主要考查积的乘方与幂的乘方、合并同类项、单项式乘单项式、单项式乘多项式,熟练掌握积的乘方与幂的乘方法则、合并同类项法则、单项式乘单项式乘法法则、单项式乘多项式乘法法则是解决本题的关键5A解析:A【分析】根据分式的分母不为零,让分式的分母为零列式求a是否存在即可【详解】解:A、分母故选项正确,符合题意;B、当a=0,分母为零,故选项错误,不符合题意;C、当a=1,分母为零故选项错误,不符合题意;D、当a=-1,分母为零故选项错误,不符合题意故选:A【点睛】此题考查了分式有意义的条件,解题的关键是找出分母为零的情况6B解析:B【分析】根据因式分解定义逐项判定即可【详解】解:A、a(x+y)ax

10、+ay是整式乘法运算,不是因式分解,此选项不符合题意;B、2a(b+c)3(b+c)(2a3)(b+c)是因式分解,此选项符合题意;C、15x53x2x5不是把多项式化成乘积式,不是因式分解,此选项不符合题意;D、a2+2a+1a(a+2)+1等式右边不是积的形式,不是因式分解,此选项不符合题意;故选:B【点睛】本题考查因式分解,熟练掌握因式分解的定义是解题的关键7D解析:D【分析】根据分式的基本性质判断即可,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变【详解】解:A、,故A不符合题意B、当c=0时,故B不符合题意C、,故C不符合题意D、,故D符合题意故选:D【点睛】本题考查

11、分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型8C解析:C【分析】根据三角形全等的判定方法逐一进行判断即可【详解】A.根据“AAS”,可以推出ABCADC,故A不符合题意;B.根据“ASA”,可以推出ABCADC,故B不符合题意;C.根据“SSA”,不能判定三角形全等,故C符合题意;D.根据“SAS”,可以推出ABCADC,故D不符合题意故选:C【点睛】本题主要考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型9C解析:C【分析】根据关于x的方程的解是整数,且一次函数y=(k-3)x+k+2的图象不经过第三象限,可以求得满足条件的k的值,从

12、而可以得到满足条件的所有整数k的和【详解】解:由分式方程得,x=,分式方程的解是整数,是整数且不等于2,k不等于1一次函数y=(k-3)x+k+2的图象不经过第三象限,解得-2k3,是整数且不等于2,k=-2,0,(-2)+0=-2,满足条件的所有整数k的值的和是-2,故选:C【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的k的值,利用一次函数的性质和分式方程的知识解答10D解析:D【分析】根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解【详解】解:空白部分的面积:(a-b)2,还可以表示为:a2-2ab+

13、b2,所以,此等式是(a-b)2=a2-2ab+b2故选:D【点睛】本题考查了完全平方公式的几何背景,解题的关键是利用两种方法表示出空白部分的面积11B解析:B【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【点睛】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.二、填空题12【分析】首先根据分式值为零的条件是分子等于零且分母不等于零,得出,进而计算出x的

14、值即可【详解】解:分式的值为零,解得:故答案为:【点睛】本题主要考查了分式值为零的条件,熟练掌握“分式值为零的条件是分子等于零且分母不等于零”是解本题的关键13-2【分析】根据关于y轴对称的点的特点解答即可【详解】点P1()与P2()关于轴对称,n=-2,m-4=-3m解得:n=-2,m=1则mn=-2故答案为:-2【点睛】此题主要考查了关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变14A解析:-17【分析】先计算出,再根据已知等式得出A、B的方程组,解之可得【详解】=,解得:,A- B=-7-10=-17,故答案为-17【点睛】本题主要考查分式的加减法

15、,解题的关键是掌握分式的加减运算法则,并根据题意得出关于A、B的方程组152【分析】根据同底数幂除法的逆运算求解即可【详解】解:,故答案为:2【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键1660#60度【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PAPC,由两点之间线段最短可知,AE即为PE+PC的最小值,然后根据等边三角形的性质求出E解析:60#60度【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PAPC,由两点之间线段最短可知,AE即为PE+PC的最小值,然后根据等边三角形的性质求出EPB

16、60,再通过BPECPE得出EPCEPB60【详解】解:ABC是等边三角形,BD是ABC的平分线,点D为AC的中点,BDAC,点A、点C关于BD对称,如图,连接AE,交BD于P,线段AE的长即为PE+PC最小值,点E是边BC的中点,AEBC,ABC60,BD是ABC的平分线,PBE30,BPE60,在BPE和CPE中, ,BPECPE(SAS),EPCBPE60故答案为:60【点睛】本题考查的是轴对称最短路线问题,熟知等边三角形的性质是解答此题的关键17或【分析】利用完全平方公式的特点即“首平方,尾平方,二倍底数乘积放中央”可知-mx为二倍底数乘积,进而可得到答案【详解】解:,m20,故答案为

17、:20 或【点睛解析:或【分析】利用完全平方公式的特点即“首平方,尾平方,二倍底数乘积放中央”可知-mx为二倍底数乘积,进而可得到答案【详解】解:,m20,故答案为:20 或【点睛】本题考查了完全平方公式,关键在于熟知完全平方公式的特点进行求解18【分析】如图(见解析),先根据角平分线的定义可得,再根据三角形的内角和定理、四边形的内角和即可得【详解】解:如图,、分别平分、,又,故答案为:【点解析:【分析】如图(见解析),先根据角平分线的定义可得,再根据三角形的内角和定理、四边形的内角和即可得【详解】解:如图,、分别平分、,又,故答案为:【点睛】本题考查了角平分线的定义、三角形的内角和定理、四边

18、形的内角和,熟练掌握三角形的内角和定理、四边形的内角和是解题关键193或【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度【详解】解:设点P运动的时间为t秒,则BP3t,CP83t,BC,当BECP解析:3或【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度【详解】解:设点P运动的时间为t秒,则BP3t,CP83t,BC,当BECP6,BPCQ时,BPE与CQP全等,此时,683t,解得t,BPCQ2,此时,点Q的运动速度为23厘米/秒;当BECQ6,BPCP时,BPE与CQP全等,此时,3t83t,解得t,点Q的运动速度为6厘米/秒;故答案为:

19、3或【点睛】本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等三、解答题20(1)(2)【分析】利用提公因式法和公式法进行因式分解即可.(1)解:原式= (x24)y=(2)解:原式=2(x26x9)=【点睛】本题主要考查因式分解,熟练地掌解析:(1)(2)【分析】利用提公因式法和公式法进行因式分解即可.(1)解:原式= (x24)y=(2)解:原式=2(x26x9)=【点睛】本题主要考查因式分解,熟练地掌握提公因式法,公式法,和分组分解法是解题的关键.21(1)(2)无解【分析】(1)方程两边同乘,然后可求解方程;(2)方程两边同乘,然后可求解方程(1)解:去分母

20、得:,移项、合并同类项得:,解得:;经检验:当时,解析:(1)(2)无解【分析】(1)方程两边同乘,然后可求解方程;(2)方程两边同乘,然后可求解方程(1)解:去分母得:,移项、合并同类项得:,解得:;经检验:当时,是原方程的解;(2)解:去分母得:,移项、合并同类项得:,经检验:当时,原方程无解【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键22见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC,BECD,AACD 在ABC和ECD中,ABC解析:见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC,BE

21、CD,AACD 在ABC和ECD中,ABCECD(SAS)AEACDE【点睛】本题考查了全等三角形的判定和性质,证明ABCECD是本题的关键23(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:AB解析:(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO1000ACO,由三角形的外角性质可求

22、解【详解】解:(1)如图1,延长BO交AC于D,即(2)由(1)知,ABE、ACE的二等分线(即角平分线)BF、CF交于点F,(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO1000ACO,BOCOBO1000+OCO1000+BO1000C(ABO+ACO)+BO1000C,BO1000CABO1000+ACO1000+BAC(ABO+ACO)+BAC,则ABO+ACO(BO1000CBAC),代入BOC(ABO+ACO)+BO1000C,BOC(BO1000CBAC)+BO1000C,解得:BO1000C(BOC+BAC)BOC+BAC,BOCm,B

23、ACn,BO1000Cm+n();故答案为:【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键241元【分析】设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论解析:1元【分析】设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是元,根据题

24、意得:,解得:x1,经检验,x1是原分式方程的解,且符合题意答:降价后每枝玫瑰的售价是1元【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键25(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式解析:(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论【详解】解:(1)把带入

25、多项式,发现此多项式的值为0,多项式中有因式,于是可设,得出:,(2)把代入,多项式的值为0,多项式中有因式,于是可设,【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式26(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结解析:(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结论(3)证明AFOOBR(S

26、AS),推出OA=OR,可得结论【详解】解:(1)如图中,ABC是等边三角形,AB=BC,A=CBD=60,在EAB和DBC中,EABDBC(SAS),ABE=BCD,BOD=BCD+CBE=ABE+CBE=CBA=60,BOC=180-60=120故答案为:120(2)相等理由:如图中,FCO,ACB都是等边三角形,CF=CO,CA=CB,FCO=ACB=60,FCA=OCB,在FCA和OCB中,FCAOCB(SAS),AF=BO(3)如图中,结论:AO=2OG理由:延长OG到R,使得GR=GO,连接CR,BR在CGO和BGR中,CGOBGR(SAS),CO=BR=OF,GCO=GBR,AF

27、=BO,COBR,FCAOCB,AFC=BOC=120,CFO=COF=60,AFO=COF=60,AFCO,AFBR,AFO=RBO,在AFO和OBR中,AFOOBR(SAS),OA=OR,OR=2OG,OA=2OG【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题27(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易解析:(1)A(0,1);(2)见解析;(3)不变,BP= 2【

28、分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGABD(ASA),即得CG=AD=CD,ADB=G,由DCE=GCE=45,可证DCEGCE(SAS)得CDE=G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点E,构建全等三角形:CBEBAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPEDPB,故BP=EP=2(1)如图(

29、1),过点C作CFy轴于点F,CFy轴于点F,CFA=90,ACF+CAF=90,CAB=90,CAF+BAO=90,ACF=BAO,在ACF和ABO中,ACFABO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作CGAC交y轴于点G,CGAC,ACG=90,CAG+AGC=90,AOD=90,ADO+DAO=90,AGC=ADO,在ACG和ABD中,ACGABD(AAS),CG=AD=CD,ADB=G,ACB=45,ACG=90,DCE=GCE=45,在DCE和GCE中,DCEGCE(SAS),CDE=G,ADB=CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点EABC=90,CBE+ABO=90BAO+ABO=90,CBE=BAOCEB=AOB=90,AB=AC,CBEBAO(AAS),CE=BO,BE=AO=4BD=BO,CE=BDCEP=DBP=90,CPE=DPB,CPEDPB(AAS),BP=EP=2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服