资源描述
人教版八年级上学期期末强化数学综合检测试题(一)
一、选择题
1、下列图形是轴对称图形的是( )
A. B. C. D.
2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000070米.数据0.00000007用科学记数法表示为( )
A. B. C. D.
3、计算(a2+ab)÷a的结果是( )
A.a+b B.a2+b C.a+ab D.a3+a2b
4、使分式有意义的的取值范围为( )
A. B. C. D.
5、下列各式由左到右的变形中,属于因式分解的是( )
A.10x2﹣5x=5x(2x﹣1) B.a(m+n)=am+an
C.(a+b)2=a2+b2 D.x2﹣16+6x=(x+4)(x﹣4)+6x
6、下列各式与相等的是( )
A. B. C. D.
7、如图,等腰△ABC中,AB=AC,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
A.AE =AD B.∠AEB=∠ADC
C.BE =CD D.∠EBC=∠DCB
8、若关于的分式方程的解为,则的值为( )
A. B. C. D.2
9、如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点,得第1条线段;再以为圆心,1为半径向右画弧交OB于点,得第2条线段;再以为圆心,1为半径向右画弧交OC于点,得第3条线段 ;……;这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n的值为( )
A.9 B.21 C.35 D.100
二、填空题
10、如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌,△AEB≌,且,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是( )
A.105° B.100° C.110° D.115°
11、当x=___时,分式的值为0.
12、若点P(2,3)关于轴的对称点是点 (,),则=_____.
13、已知a+b=5,ab=3,=_____.
14、计算:(﹣0.25)2021×42022=_____.
15、如图,在等边中,是的中点,是的中点,是上任意一点.如果,,那么的最小值是 .
16、如果是完全平方式,则__.
17、已知,则______.
18、如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______.
三、解答题
19、分解因式
(1);
(2).
20、解方程:
(1)=;
(2)+1、
21、已知:如图,点D在线段AC上,点B在线段AE上,AE=AC,BE=DC,求证:∠E=∠C.
22、已知:直线,直线AD与直线BC交于点E,∠AEC=110°.
(1)如图①,BF平分∠ABE交AD于F,DG平分∠CDE交BC于G,求∠AFB+∠CGD的度数;
(2)如图②,∠ABC=30°,在∠BAE的平分线上取一点P,连接PC,当∠PCD=∠PCB时,直接写出∠APC的度数.
23、第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地5G下载速度是每秒多少兆?
24、若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,
我们称这样的数k为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F(k)=.
(1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ;
(2)证明:对于任意的四位“言唯一数”m,m+m'能被11整除;
(3)设四位“言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y均为整数),若F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.
25、如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)求∠CAM的度数;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
一、选择题
1、D
【解析】D
【分析】根据轴对称图形的概念进行解答即可.
【详解】解:A.不是轴对称图形,故此选项不符合题意;
B.不是轴对称图形,故此选项不合题意;
C.不是轴对称图形,故此选项不合题意;
D.是轴对称图形,故此选项符合题意;
故选:D.
【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
2、C
【解析】C
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:;
故选:C.
【点睛】本题考查科学记数法;熟练掌握科学记数法中与的确定方法是解题的关键.
3、A
【解析】A
【分析】利用多项式除以单项式的运算法则进行计算即可.
【详解】解:(a2+ab)÷a=a+b,
故选:A.
【点睛】本题考查了多项式除以单项式,正确的计算是解题的关键.
4、B
【解析】B
【分析】根据分式有意义的条件列不等式求解即可.
【详解】解:∵分式有意义,
∴,解得,
故选:B.
【点睛】本题考查了分式有意义的条件,解题关键是掌握分式有意义的条件是分母不为0.
5、A
【解析】A
【分析】利用因式分解的定义判断即可.
【详解】解:A、符合因式分解的定义,故本选项符合题意;
B、是整式的乘法,不是因式分解,故本选项不符合题意;
C、等号左右两边式子不相等,故本选项不符合题意;
D、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意.
故选:A.
【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键.因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
6、B
【解析】B
【详解】解:A、,故此选项不符合题意;
B、,故此选项符合题意;
C、,故此选项不符合题意;
D、,故此选项不符合题意;
故选:B.
【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,属于基础题型.
7、C
【解析】C
【分析】根据判定三角形全等的条件逐一判断即可.
【详解】解:A.∵AB=AC,,AE =AD,
∴△ABE≌△ACD(SAS),故该选项不符合题意;
B.∵∠AEB=∠ADC,AB=AC,,
∴△ABE≌△ACD(AAS),故该选项不符合题意;
C.AB=AC,,BE =CD,不能证明△ABE≌△ACD,符合题意;
D.∵,
∴,
∵∠EBC=∠DCB,
∴,
又∵AB=AC,,
∴,故该选项不符合题意,
故选:C
【点睛】本题考查了全等三角形的判定方法,熟练掌握全等三角形的判定方法是解题的关键.
8、A
【解析】A
【分析】将x=2回代到方程中即可求出a值.
【详解】将x=2代入方程
得:
解得a=-4
故选:A.
【点睛】本题考查了分式方程的解,通过已知分式方程的解求未知数的知识.解题的关键是将x的值回代到原方程.
9、A
【解析】A
【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1 AB的度数,∠A2 A1 C的度数,∠A3A2 B的度数,∠A4 A3C的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.
【详解】解:由题意可知:AO= A1A,A1A= A2A1, …;
则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…;
∵∠BOC=9°,
∴∠A1AB=2∠BOC= 18°,
同理可得∠A2A1C= 27°, ∠A3A2B = 36°, ∠A4A3C = 45°,∠A5A4B= 54°,
∠A6A5C=63°,∠A7A6B= 72°,∠A8A7C=81°,∠A9A8B=90°,
∴第10个三角形将有两个底角等于90°,不符合三角形的内角和定理,
∴最多能画9条线段;
故选:A.
【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.
二、填空题
10、B
【解析】B
【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′+∠CAD,再求出∠C′+∠AHC′即可解决问题.
【详解】解:延长C′D交AB′于H.
∵△AEB≌△AEB′,
∴∠ABE=∠B′,∠EAB=∠EAB′=40°,
∵C′H∥EB′,
∴∠AHC′=∠B′,
∵△ADC≌△ADC′,
∴∠C′=∠ACD,∠DAC=∠DAC′=40°,
∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,
∴∠BFC=∠AHC′+∠C′+∠CAD,
∵∠DAC=∠DAC′=∠CAB′=40°,
∴∠C′AH=120°,
∴∠C′+∠AHC′=60°,
∴∠BFC=60°+40°=100°,
故选:B.
【点睛】本题考查了全等三角形的性质,平行线的性质,三角形的内角和定理以及三角形外角的性质等知识,熟练掌握基本性质是解题的关键.
11、3
【分析】根据分式值为零时,分子为0分母不为0可列式计算求解.
【详解】解:由题意得x﹣3=0,3x+1≠0,
解得:x=3,
故答案为:2、
【点睛】本题主要考查了分式的值为零的条件,熟练掌握分式值为零时,分子为0,分母不为0是解题的关键.
12、3
【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点的坐标是(-x,y),进而得出a的值.
【详解】点P(2,3)关于y轴的对称点是点(-2,a),
则a=2、
故答案为:2、
【点睛】此题主要考查了关于y轴的对称点的坐标特点,正确掌握关于y轴对称点的性质是解题关键.
13、.
【分析】将a+b=5、ab=3代入原式=,计算可得.
【详解】当a+b=5、ab=3时,
原式=
=
=
=.
故答案为.
【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.
14、﹣4
【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.
【详解】解:
.
故答案为:.
【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
15、【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值.
【详解】
∵△ABC是等边三角形,
∴B点关于AD的对称点就是C点,
连接CE交AD于点H,此时HE+HB的值最小.
∴CH
【解析】
【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值.
【详解】
∵△ABC是等边三角形,
∴B点关于AD的对称点就是C点,
连接CE交AD于点H,此时HE+HB的值最小.
∴CH=BH,
∴HE+HB=CE,
根据等边三角形的性质,可知三条高的长度都相等,
∴CE=AD=.
故答案为: .
【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.
16、±6
【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值.
【详解】解:,
,
解得.
故答案为:.
【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键.
【解析】±6
【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值.
【详解】解:,
,
解得.
故答案为:.
【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键.
17、-1
【分析】根据代入计算,继而求得结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题主要考查了完全平方公式,理解是解题关键.
【解析】-1
【分析】根据代入计算,继而求得结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题主要考查了完全平方公式,理解是解题关键.
18、7或3.5
【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;
【详解】解:当P在AC上,Q在BC上时,
∵∠ACB=90°,
∴∠PCE+∠Q
【解析】7或3.5
【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;
【详解】解:当P在AC上,Q在BC上时,
∵∠ACB=90°,
∴∠PCE+∠QCF=90°,
∵PE⊥l于E,QF⊥l于F.
∴∠PEC=∠CFQ=90°,
∴∠EPC+∠PCE=90°,
∴∠EPC=∠QCF,
∵△PEC与△QFC全等,
∴此时是△PCE≌△CQF,
∴PC=CQ,
∴8-t=10-3t,
解得t=1,
∴CQ=10-3t=7;
当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,
由题意得,8-t=3t-10,
解得t=4.5,
∴CQ=3t-10=3.5,
综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5,
故答案为:7或3.4、
【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键.
三、解答题
19、(1)5;
(2)(a-1)(a+4).
【分析】(1)原式提取5,再利用完全平方公式分解即可;
(2)原式整理后,利用十字相乘法分解即可.
(1)
解:
=5()
=5;
(2)
解:
=-16+
【解析】(1)5;
(2)(a-1)(a+4).
【分析】(1)原式提取5,再利用完全平方公式分解即可;
(2)原式整理后,利用十字相乘法分解即可.
(1)
解:
=5()
=5;
(2)
解:
=-16+3a+12
=+3a-4
=(a-1)(a+4).
【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键.
20、(1)x=;
(2)x=;
【分析】(1)方程两边同时乘以x(x+3),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解;
(2)方程两边同时乘以2(x-1),把分式方程化成整式方程,
【解析】(1)x=;
(2)x=;
【分析】(1)方程两边同时乘以x(x+3),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解;
(2)方程两边同时乘以2(x-1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.
(1)
=
解:方程两边同时乘以x(x+3)得:
x+3=5x,
解得:x=,
检验:当x=时,x(x+3)≠0,
∴原分式方程的解为x=;
(2)
+2
解:因式分解得:+2
方程两边同时乘以2(x-1)得:
2x=3+4(x-1),
解得:x=,
检验:当x=时,2(x-1)≠0,
∴原分式方程的解为x=;
【点睛】本题考查了解分式方程,把分式方程化成整式方程是解决问题的关键.
21、见解析
【分析】利用SAS证明△ABC≌△ADE即可得出结论.
【详解】证明:∵AE=AC,BE=DC,
∴AB=AD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∴∠E=∠C
【解析】见解析
【分析】利用SAS证明△ABC≌△ADE即可得出结论.
【详解】证明:∵AE=AC,BE=DC,
∴AB=AD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∴∠E=∠C.
【点睛】本题主要考查了全等三角形的判定与性质,证明△ABC≌△ADE是解题的关键.
22、(1)195°
(2)50°或10°
【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;
(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在
【解析】(1)195°
(2)50°或10°
【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;
(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解.
(1)
解:过点E作MN∥AB,如下图①所示:
∵AB∥CD,MN∥AB,
∴AB∥MN∥CD,
∴∠BAE=∠AEM,∠DCE=∠CEM,∠ABE=∠BEN,∠NED=∠EDC,
∵∠AEC=110°,
∴∠BED=110°,
∴∠BAE+∠DCE=∠AEM+∠CEM=∠AEC=110°,
∠ABE+∠CDE=∠BEN+∠NED=∠BED=110°,
∵BF平分∠ABE,DG平分∠CDE,
∴∠ABF=∠ABE,∠CDG=∠CDE,
∴∠AFB+∠CGD=180°-(∠BAE+∠ABF)+180°-(∠DCE+∠CDG)
=180°-∠BAE-∠ABE+180°-∠DCE-∠CDE
=360°-(∠BAE+∠DCE)-(∠ABE+∠CDE)
=360°-110°-×110°
=195°,
∴∠AFB+∠CGD的度数为195°.
(2)
解:分类讨论:
情况一:当点P位于BC左侧时,如下图②所示:
此时∠PCD=∠PCB不可能成立,故此情况不存在;
情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图③所示:
∵∠AEC=110°,∠ABC=30°,
∴∠BAE=110°-30°=80°,
∵AB∥CD,MP∥AB,
∴AB∥MP∥CD,
∴∠APM=∠BAP=∠BAE=40°,
∠ABC=∠BCD=30°,
又∵∠PCD=∠PCB,
∴∠PCD=∠BCD=10°,
∴∠MPC=∠PCD=10°,
∴∠APC=∠MPC+∠APM=10°+40°=50°;
情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图④所示:
∵∠AEC=110°,∠ABC=30°,
∴∠BAE=110°-30°=80°,
∵AB∥CD,MP∥AB,
∴AB∥MP∥CD,
∴∠APM=∠BAP=∠BAE=40°,
∠ABC=∠BCD=30°,
又∵∠PCD=∠PCB,
∴∠PCD=∠BCD=30°,
∴∠MPC=∠PCD=30°,
∴∠APC=∠APM-∠MPC=40°-30°=10°,
综上,∠APC的度数为50°或10°.
【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键.
23、60兆
【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可.
【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的
【解析】60兆
【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可.
【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆
由题意得:
解得:x=4,
经检验:x=4是原分式方程的解,且符合题意,
15×4=60,
答:该地5G的下载速度是每秒60兆.
【点睛】本题主要考查了分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.
24、(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和
【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的
【解析】(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和
【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k为“言唯一数”,解答即可.
【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ;
(2)证明:设,则
都为正整数,则也是正整数
对于任意的四位“言唯一数”,能被整除.
(3) (,且,、均为整数)
.
则
仍然为言唯一数, 末尾数字为0,129末尾数字为9
则的末尾数字为2,
或
①当时,,
时,,此时
②当时,,
时,,此时
满足条件的所有的四位“言唯一数”为和
【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键.
25、(1)30°;(2)见解析;(3)是定值,理由见解析
【分析】(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;
(3)分情
【解析】(1)30°;(2)见解析;(3)是定值,理由见解析
【分析】(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;
(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论.
【详解】解:(1)是等边三角形,
.
线段为边上的中线,
,
.
故答案为:30°;
(2)与都是等边三角形,
,,,
,
.
在和中,
,
;
(3)是定值,,
理由如下:
①当点在线段上时,如图1,
由(2)可知,则,
又,
,
是等边三角形,线段为边上的中线,
平分,即,
.
②当点在线段的延长线上时,如图2,
与都是等边三角形,
,,,
,
,
在和中,
,
,
,
同理可得:,
.
③当点在线段的延长线上时,如图3,
与都是等边三角形,
,,,
,
,
在和中,
,
,
,
同理可得:,
,
,,
.
综上,当动点在直线上时,是定值,.
【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
展开阅读全文