收藏 分销(赏)

人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc

上传人:w****g 文档编号:1878755 上传时间:2024-05-10 格式:DOC 页数:18 大小:691.54KB 下载积分:8 金币
下载 相关 举报
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第1页
第1页 / 共18页
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第2页
第2页 / 共18页


点击查看更多>>
资源描述
人教版初二上册压轴题模拟数学综合检测试卷解析(一) 1.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 2.(1)模型:如图1,在中,平分,,,求证:. (2)模型应用:如图2,平分交的延长线于点,求证:. (3)类比应用:如图3,平分,,,求证:. 3.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足. (1)直接写出______,______; (2)连接AB,P为内一点,. ①如图1,过点作,且,连接并延长,交于.求证:; ②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标. 4.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 5.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 6.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似. 例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i; (1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i; 根据以上信息,完成下列问题: (1)填空:i3=  ,i4=  ,i+i2+i3+…+i2021=  ; (2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i); (3)已知a+bi=(a,b为实数),求的最小值. 7.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE. (1)连接AE、CD,如图1,求证:AE=CD; (2)若N为CD中点,连接AN,如图2,求证:CE=2AN (3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果) 8.△ABC、△DPC都是等边三角形. (1)如图1,求证:AP=BD; (2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM. ①求证:BP⊥BD; ②判断PC与PA的数量关系并证明. 【参考答案】 2.(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴 解析:(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB,    又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题. 3.(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而 解析:(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解; (3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案; 【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC, ∴DE=DF, ∵ ,, ∴:=AB:AC; (2)如图,在AB上取点E,使得AE=AC,连接DE 又∵ AD平分∠CAE, ∴ ∠CAD=∠DAE, 在△ACD和△AED中, , ∴△ACD≌△AED(SAS), ∴CD=DE且∠ADC=∠ADE, ∴ , ∴ , ∴AB:AC=BD:CD; (3)如图延长BE至M,使EM=DC,连接AM, ∵ ∠D+∠AEB=180°, 又∵∠AEB+∠AEM=180°, ∴∠D=∠AEM, 在△ADC与△AEM中, , ∴△ADC≌△AEM(SAS), ∴∠DAC=∠EAM=∠BAE,AC=AM, ∴AE为∠BAM的角平分线, 故 , ∴BE:CD=AB:AC; 【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键; 4.(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明 解析:(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB; ②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解. 【详解】(1)∵, ∴, ∴,, 解得:,, 故答案为:3,; (2)①连接AC, ∵∠COP=∠AOB=90°, ∴∠COP-∠AOP =∠AOB-∠AOP, ∴, 在△OPB和△OCA中, , ∴△OPB≌△OCA(SAS), ∴AC=BP,∠OCA=∠OPB=90°, 过点B作BN⊥BP,交CP的延长线于点N, ∵∠COP=90°,OP=OC, ∴∠OCP=∠OPC=∠ACP=45°, ∵∠OPB=90°, ∴∠BPN=45°, ∴△BNP为等腰直角三角形, ∴∠BPN=∠N=45°, ∴BN=BP=AC, 在△ACD和△BND中, , ∴△ACD≌△BND(AAS), ∴AD=DB; ②∵∠AOB=90°,AO=OB, ∴△AOB为等腰直角三角形, ∴∠OBA=45°, ∵∠MBO=∠ABP, ∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°, ∴∠MBP=45°, ∵OP⊥BP, ∴△BMP为等腰直角三角形, ∴MP=BP, 过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE, ∴∠MPE+∠EMP=∠MPE +∠FPB=90°, ∴∠EMP=∠FPB, 在△PBF和△MPE中, , ∴△PBF≌△MPE(AAS), ∴BF=EP,PF=ME, ∵P(2n,−n), ∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n, ∴MH=ME-EH=3−n−2n=3−3n, ∴E(2n,n) ,M(3n−3,n), ∴点P,E关于x轴对称, ∴OE=OP,∠OEP=∠OPE, 同理OM=OE,点M,E关于y轴对称, ∴3n−3+2n=0, 解得,即点M的坐标为(,). 【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题. 5.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 6.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键. 7.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条 解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案; (3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案. 【详解】(1)i3=i2•i=﹣1×i=﹣i, i4=i2•i2=﹣1×(﹣1)=1, 设S=i+i2+i3+…+i2021, iS=i2+i3+…+i2021+i2022, ∴(1﹣i)S=i﹣i2022, ∴S=, 故答案为﹣i,1,; (2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i) =3﹣4i+3i﹣4i2﹣(4﹣9i2) =3﹣i+4﹣4﹣9 =﹣i﹣6; (3)a+bi====4+3i, ∴a=4,b=3, ∴=, ∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离, ∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离, ∴A'B==25, ∴的最小值为25. 【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键. 8.(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN 解析:(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论; (3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论. (1) 解:∵△ABD和△BCE是等边三角形, ∴BD=AB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, ∴∠DBC=∠ABE, ∴△ABE≌△DBC(SAS), ∴AE=CD; (2) 解:如图,延长AN使NF=AN,连接FC, ∵N为CD中点, ∴DN=CN, ∵∠AND=∠FNC, ∴△ADN≌△FCN(SAS), ∴CF=AD,∠NCF=∠AND, ∵∠DAB=∠BAC=60° ∴∠ACD +∠ADN=60° ∴∠ACF=∠ACD+∠NCF=60°, ∴∠BAC=∠ACF, ∵△ABD是等边三角形, ∴AB=AD, ∴AB=CF, ∵AC=CA, ∴△ABC≌△CFA (SAS), ∴BC=AF, ∵△BCE是等边三角形, ∴CE=BC=AF=2AN; (3) 解: ∵△ABD是等边三角形, ∴,∠BAD=60°, 在Rt△ABC中,∠ACB=90°-∠BAC=30°, ∴, 如图,过点E作EH // AD交AM的延长线于H, ∴∠H=∠BAD=60°, ∵△BCE是等边三角形, ∴BC=BE,∠CBE=60°, ∵∠ABC=90°, ∴∠EBH=90°-∠CBE=30°=∠ACB, ∴∠BEH=180°-∠EBH-∠H=90°=∠ABC, ∴△ABC≌△HEB (ASA), ∴,, ∴AD=EH, ∵∠AMD=∠HME, ∴△ADM≌△HEM (AAS), ∴AM=HM, ∴ ∵,, ∴. 故答案为:. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 9.(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接C 解析:(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论; ②结论:PC=2PA.想办法证明∠DPB=30°,可得结论. (1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP; (2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA. 【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服