收藏 分销(赏)

人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc

上传人:w****g 文档编号:1878755 上传时间:2024-05-10 格式:DOC 页数:18 大小:691.54KB
下载 相关 举报
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第1页
第1页 / 共18页
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第2页
第2页 / 共18页
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第3页
第3页 / 共18页
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第4页
第4页 / 共18页
人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、人教版初二上册压轴题模拟数学综合检测试卷解析(一)1在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小2(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:3如图,在平面直角坐标系

2、中,点A(a,0),B(0,b),且a,b满足(1)直接写出_,_;(2)连接AB,P为内一点,如图1,过点作,且,连接并延长,交于求证:;如图2,在的延长线上取点,连接若,点P(2n,n),试求点的坐标4在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标5如图,在平面直角坐标系中,A(a,0),B(

3、0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CBD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P,连PM、PO试探究PM和PO的关系6阅读理解题:定义:如果一个数的平方等于1,记为i21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;

4、根据以上信息,完成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)已知a+bi(a,b为实数),求的最小值7已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长AB交DE于M,DB=,如图3,则BM=_(直接写出结果)8ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求

5、证:BPBD;判断PC与PA的数量关系并证明【参考答案】2(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a

6、+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5

7、【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题3(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE为B

8、AM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质

9、、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;4(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明解析:(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明OPBOCA,再证明BNP为等腰直角三角形,利用AAS证明ACDBND,即可证明AD=DB;作出如图所示的辅助线,证明BMP为等腰直角三角形,利用AAS证明P

10、BFMPE,求得E(2n,n) ,M(3n3,n),证明点M,E关于y轴对称,得到3n3+2n=0,即可求解【详解】(1),解得:,故答案为:3,;(2)连接AC,COP=AOB=90,COP-AOP =AOB-AOP,在OPB和OCA中,OPBOCA(SAS),AC=BP,OCA=OPB=90,过点B作BNBP,交CP的延长线于点N,COP=90,OP=OC,OCP=OPC=ACP=45,OPB=90,BPN=45,BNP为等腰直角三角形,BPN=N=45,BN=BP=AC,在ACD和BND中,ACDBND(AAS),AD=DB;AOB=90,AO=OB,AOB为等腰直角三角形,OBA=45

11、,MBO=ABP,MBO+OBP=ABP+OBP=OBA=45,MBP=45,OPBP,BMP为等腰直角三角形,MP=BP,过点P作y轴的平行线EF,分别过M,B作MEEF于E,BFEF于F,EF交x轴于G,ME交y轴于H,连接OE,MPE+EMP=MPE +FPB=90,EMP=FPB,在PBF和MPE中,PBFMPE(AAS),BF=EP,PF=ME,P(2n,n),BF=EP=EH=2n,PG=EG=n,PF=ME=3n,MH=ME-EH=3n2n=33n,E(2n,n) ,M(3n3,n),点P,E关于x轴对称,OE=OP,OEP=OPE,同理OM=OE,点M,E关于y轴对称,3n3+

12、2n=0,解得,即点M的坐标为(,)【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题5(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,

13、过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO

14、=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,

15、2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解6(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,

16、再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.7(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根

17、据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条解析:(1)i,1,;(2)i6;(3)的最小值为25【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1)i3i2i1ii,i4i2i21(1)1,设Si+i2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i

18、)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为25【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键8(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即

19、可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB,BC=BE,ABD=CBE=60,ABD+ABC=CBE+ABC,DBC=ABE,ABEDBC(SAS),AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF

20、=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH / AD交AM的延长线于H,H=BAD=60,BCE是等边三角形,BC=BE,CBE=60,ABC=90,EBH=90CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要

21、考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键9(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证

22、明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服