收藏 分销(赏)

八年级数学下册期末试卷达标检测(Word版含解析).doc

上传人:快乐****生活 文档编号:1875788 上传时间:2024-05-10 格式:DOC 页数:30 大小:974.54KB
下载 相关 举报
八年级数学下册期末试卷达标检测(Word版含解析).doc_第1页
第1页 / 共30页
八年级数学下册期末试卷达标检测(Word版含解析).doc_第2页
第2页 / 共30页
八年级数学下册期末试卷达标检测(Word版含解析).doc_第3页
第3页 / 共30页
八年级数学下册期末试卷达标检测(Word版含解析).doc_第4页
第4页 / 共30页
八年级数学下册期末试卷达标检测(Word版含解析).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、八年级数学下册期末试卷达标检测(Word版含解析)一、选择题1要使有意义,则实数的取值范围是( )ABCD2下列各组数中能作为直角三角形三边长的是()A2,3,4B4,5,6C8,13,5D3,4,53已知四边形ABCD中,对角线AC、BD交于O,则下列选项中不能证明四边形ABCD为平行四边形的是()AABCD,ABCDBABCD,BCADCABCD,ACBDDOAOC,OBOD4一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9这5个数据的众数是( )A6B7C8D95如图,平行四边形ABCD的对角线AC与BD相交于点OCEAD于点E,AB2,AC4,BD8,则CE()ABCD6如图所

2、示,在菱形ABCD中,AC,BD相交于O,ABC50,E是线段AO上一点则BEC的度数可能是()A95B75C55D357如图,数轴上A点表示的数为,B点表示的数是1过点B作,且,以点A为圆心,的长为半径作弧,弧与数轴的交点D表示的数为( )ABCD8如图,在平面直角坐标系中,矩形的顶点,点与坐标原点重合,动点从点出发,以每秒2个单位的速度沿的路线向终点运动,连接、,设点运动的时间为秒,的面积为,下列图像能表示与之间函数关系的是( ) A B C D 二、填空题9式子在实数范围内有意义,则实数x的取值范围是_10一个菱形的两条对角线的长分别为3和6,这个菱形的面积是_11直角三角形的两条直角边

3、长分别为、,则这个直角三角形的斜边长为_cm12如图,矩形的对角线,交于点,过点作,交于点,过点作,垂足为则的值为_13请写出一个一次函数表达式,使此函数满足:y随x的增大而减小;函数图象过点(-1,2),你写的函数表达式是_14如图,在四边形ABCD中ABCD,若加上ADBC,则四边形ABCD为平行四边形.若E、F为BD上两点,且BE=DF.现在请你给ABCD添加一个适当的条件_,使得四边形AECF为菱形.15如图,在平面直角坐标系中,点A1,A2,A3,都在x轴正半轴上,点B1,B2,B3,都在直线上,A1B1A2,A2B2A3,A3B3A4,都是等边三角形,且OA11,则点B6的纵坐标是

4、_16如图,正方形边长为,点在边上,交于点,则的长度是_三、解答题17计算: (1); (2);(3); (4)18一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?19如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点已知、都是格点(1)小明发现图2中是直角,请在图1补全他的思路;(2)请借助图3用一种不同于小明的方法说明是直角20如图,在中,于点H,E是A上一点,过点B作,交的延长线于点F,连接,(1)求证:四边形是菱形;(2)若,求的度数21阅读下列材料,然后回答问题:

5、在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一: 方法二: (1)请用两种不同的方法化简: ;(2)化简: .22某电影院普通票价20元/张,暑假为了促销,新推出两种优惠卡:金卡售价600元/张,每次凭卡不再收费银卡售价150元/张,每次凭卡另收10元暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设看电影x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,提出1条合算的消费建议23如图1,在平面直角坐标系xOy中,直线l1:

6、yx+6交x轴于点A,交y轴于点B,经过点B的直线l2:ykx+b交x轴于点C,且l2与l1关于y轴对称(1)求直线l2的函数表达式;(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针度后得到线段DF如图2,当点D的坐标为(2,m),45,且点F恰好落在线段BC上时,求线段AE的长;如图3,当点D的坐标为(1,n),90,且点E恰好和原点O重合时,在直线y3上是否存在一点G,使得DGFDGO?若存在,直接写出点G的坐标;若不存在,请说明理由24在平面直角坐标系中,点A坐标为(0,4),点B坐标为(3,0),连接AB,过点A作ACAB交x轴于点C,点E是线段AO上的一动点(1)如图

7、1,当AE3OE时,求直线BE的函数表达式;设直线BE与直线AC交于点D,连接OD,点P是直线AC上的一动点(不与A,C,D重合),当SBODSPDB时,求点P的坐标;(2)如图2,设直线BE与直线AC的交点F,在平面内是否存在点M使以点A,E,F,M为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请简述理由25如图1,在中,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其

8、余条件不变,以AP为边向右上方作正方形APMN:M点的坐标为 直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分)【参考答案】一、选择题1B解析:B【分析】根据二次根式有意义的条件进行解答即可【详解】解:有意义,解得:,故选:B【点睛】本题考查了二次根式有意义得条件,熟知根号下为非负数是解题的关键2D解析:D【分析】根据勾股定理的逆定理,对各个选项逐个分析,即可得到答案【详解】A、22+3242,不能构成直角三角形,故此选项不符合题意;B、42+5262,不能构成直角三角形,故此选项不符合题意;C、52+82132,不能构成直角三角形,故此选项不符合题意;D、32+4252,能

9、构成直角三角形,故此选项符合题意故选:D【点睛】本题考查了勾股定理的逆定理;解题的关键是熟练掌握勾股定理的逆定理,从而完成求解3C解析:C【解析】【分析】根据平行四边形的判定方法逐一进行分析判断即可【详解】解:A、ABCD,ABCD,四边形ABCD是平行四边形,故选项A不符合题意;B、ABCD,BCAD,四边形ABCD是平行四边形,故选项B不符合题意;C、由ABCD,ACBD,不能判定四边形ABCD是平行四边形,故选项C符合题意;D、OAOC,OBOD,四边形ABCD是平行四边形,故选项D不符合题意;故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键4D解析:

10、D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可【详解】解:6,7,9,8,9这5个数中9出现了两次,出现的次数最多,这组数据的众数为9,故选D【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义5C解析:C【分析】先根据平行四边形的性质可得,再根据勾股定理的逆定理可得,然后利用勾股定理可得的长,最后利用三角形的面积公式即可得【详解】解:四边形是平行四边形,是直角三角形,在中,解得,故选:C【点睛】本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键6B解析:B【解析】【分析】由菱形的性质,得AOB=90

11、,ABO=,从而得:BAO=65,进而可得:6590,即可得到答案【详解】解:在菱形中,即:AOB=90,90,ABO=,BAO=65,=BAO+ABE,55,即:5590故选B【点睛】本题主要考查菱形的性质定理以及三角形内角和定理与外角的性质,掌握菱形的性质是解题的关键7C解析:C【解析】【分析】根据题意先求得的长,根据勾股定理求得的长,根据题意,进而求得点表示的数【详解】依题意,数轴上A点表示的数为,B点表示的数是1,数轴上A点表示的数为,D表示的数为故选C【点睛】本题考查了实数与数轴,勾股定理,勾股定理求得是解题的关键8B解析:B【分析】先根据矩形的性质得到OA=BC=6,OC=AB=4

12、,再分三种情况:点P在OA、AB、BC边上时,分别求出函数解析式,即可得到图象.【详解】矩形的顶点,,OA=BC=6,OC=AB=4,当点P在OA边上即0t3时, 当点P在AB边上即3t5时, 当点P在BC边上即5t8时,故选:B .【点睛】此题考查函数图象,正确理解题意分段求出函数解析式是解题的关键.二、填空题9x3【解析】【分析】根据二次根式有意义的条件,根号内的式子必需大于等于0,即可求出答案【详解】解:式子在实数范围内有意义,则3+x0,解得:x3故答案为:x3【点睛】本题主要考查了二次根式有意义,熟练其要求是解决本题的关键109【解析】【分析】根据菱形面积的计算公式:两对角线乘积的一

13、半,即可计算出面积【详解】故答案为:9【点睛】本题考查了菱形的性质及面积计算,关键是掌握菱形面积等于两对角线乘积的一半11【解析】【分析】利用勾股定理直接计算可得答案【详解】解:由勾股定理得:斜边故答案为:【点睛】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键12A解析:【分析】依据矩形的性质即可得到的面积为12,再根,即可到的值【详解】解:AB=6,BC=8,矩形ABCD的面积为48, ,AO=DO=5,对角线AC,BD交于点O, , ,即12=,12 , 故答案:【点睛】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角,矩形的对角线相等且互相平分13y=-2x或y=-x+1

14、等(答案不唯一)【解析】【分析】设一次函数解析式为ykxb(k0),由一次函数的性质结合一次函数图象上点的坐标特征,即可得出【详解】解:设一次函数解析式为ykxb(k0)一次函数的图象过点(-1,2),且y随x的增大而减小,k0,令k=-1,则y-xb,将点(-1,2)代入可得:b=1,故答案可以为:yx+1【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k0,y随x的增大而增大;k0,y随x的增大而减小”是解题的关键14A解析:AB=AD【分析】由菱形的性质可得AE=AF,AEF=AFE,即可得到AEB=AFD,利用SAS即可证明ABEADF,可得AB=AD,即可得答案

15、.【详解】四边形AECF为菱形,AE=AF,AEF=AFE,AEB=AFD,在ABE和ADF中,ABEADF,AB=AD,可添加AB=AD,使得四边形AECF为菱形.故答案为:AB=AD【点睛】本题考查了菱形的性质及全等三角形的判定与性质,利用菱形性质得出ABEADF是解题关键.15【分析】设BnAnAn+1的边长为an,根据直线的解析式能的得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出OBnAn=30,从而得出AnBn=OAn,列出部分an的值解析:【分析】设BnAnAn+1的边长为an,根据直线的解析式能的得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出O

16、BnAn=30,从而得出AnBn=OAn,列出部分an的值,发现规律 :an+1=2an,依此规律结合等边三角形的性质即可得出结论.【详解】设BnAn An+1的边长为an,点B1,B2,B3,是直线y= 上的第一象限内的点,过A1作A1Nx轴交直线OB1于N点,OA11,点N的横坐标为1,将x=1代入y=,得到y=,点N的坐标为(1,)A1N=在RtNOA1tanA1ON= A1OB1 = 30,又Bn AnAn+1为等边三角形,BnAnAn+1 = 60,OBnAn = 30,AnBn = OAn,OA1=1a1 =1,a2=1+1=2= 2a1,a3= 1+a1 +a2=4= 2a2,a

17、4 = 1+a1 +a2十a3 =8= 2a3,an+1 = 2an,a5 =2a4= 16, a6 = 2a5 = 32,a7= 2a6= 64,A6B6A7为等边三角形,点B6的坐标为(a7-a6,(a7- a6),点B6的坐标为(48,16)故答案为:16.【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,解题的关键是找出规律:an+1=2an本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.16【分析】先根据勾股定理求得AC的长,继而求得CE的长,证得CP=CE,即可求解【详解】正方形边长为,AC=2,AE=AD=2,CE=

18、AC=AE=,ADPC,解析:【分析】先根据勾股定理求得AC的长,继而求得CE的长,证得CP=CE,即可求解【详解】正方形边长为,AC=2,AE=AD=2,CE=AC=AE=,ADPC,又,且,CP=CE=,BP=BC- CP=2-()=故答案为:【点睛】本题考查了正方形的性质,勾股定理,等腰三角形的性质和判定,求得CP=CE=是解题的关键三、解答题17(1);(2)-15;(3);(4)12【分析】(1)将原式中的二次根式化简为最简二次根式,根据二次根式的加减运算法则计算即可;(2)根据二次根式的混合运算法则计算即可;(3)根据零指数幂、解析:(1);(2)-15;(3);(4)12【分析】

19、(1)将原式中的二次根式化简为最简二次根式,根据二次根式的加减运算法则计算即可;(2)根据二次根式的混合运算法则计算即可;(3)根据零指数幂、绝对值的意义以及二次根式的混合运算法则计算即可;(4)根据二次根式的乘除运算法则计算即可【详解】解:(1)原式;(2)原式;(3)原式;(4)原式【点睛】本题考查了二次根式的混合运算,零指数幂,绝对值的意义等知识点,熟练掌握相关运算法则是解本题的关键18(1)12米;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解【详解】解:(1)由题意得,A解析:(1)12米

20、;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解【详解】解:(1)由题意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米【点睛】

21、本题主要考查勾股定理,熟练掌握勾股定理是解题的关键19(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;(2)过A点作于,过作于,然后证明,得到,在证明即可得到答案.【详解解析:(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;(2)过A点作于,过作于,然后证明,得到,在证明即可得到答案.【详解】解:(1),是直角三角形,(2)过A点作于,过作于,由图可知:,在和中,(SAS),在中,三点共线,【点睛】本题主要考查了勾股定理和勾股定理的逆定理,全等三角形的性质

22、与判定,解题的关键在于能够熟练掌握相关知识进行求解.20(1)见解析;(2)90【分析】(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数【详解】解析:(1)见解析;(2)90【分析】(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数【详解】解:(1)证明:,四边形是平行四边形 又,四边形是菱形; (2)四边形是菱形, ,即【点睛】本题考查菱形的判定与性质,熟练掌握全等三角形的判定和性质以及菱形的判定与性质是

23、解题的关键.21(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为,继而求得答案【详解】解:(1)方法一:方法二:;解析:(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为,继而求得答案【详解】解:(1)方法一:方法二:;(2)原式=【点睛】本题考查了分母有理化的知识此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法22(1)y10x+150,y20x;(2)A(0,150),B(15,300),C(45,600);(3)当0

24、x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相同,均比金卡划算;解析:(1)y10x+150,y20x;(2)A(0,150),B(15,300),C(45,600);(3)当0x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相同,均比金卡划算;当15x45时,银卡消费更划算;当x45时,金卡,银卡的总费用相同,均比普通票划算;当x45时,金卡消费更划算【分析】(1)弄清题意,结合图象易知普通票为正比例函数图象,银卡为一次函数图象,依题意写出即可;(2)银卡函数关系式y10x+150,令x0时即可求出A点坐标,令银卡函数与普通卡函数关系式相等即可找到B点坐标,令银卡

25、函数关系式y600,即可找到C点坐标;(3)结合图象分当0x15时,x15时,15x45时,x45时,x45时五段,依次分析出最合算的消费建议即可【详解】解:(1)由题意得,选择银卡时,y与x之间的函数关系式为:y10x+150;选择普通票时,y与x之间的函数关系式为:y20x;(2)由题意可得:当y10x+150,x0时,y150,故A(0,150),当10x+15020x,解得:x15,则y300,故B(15,300),当y10x+150600时,解得:x45,故C(45,600);(3)如图所示,由A、B、C三点坐标可得:当0x15时,选择普通消费更划算;当x15时,银卡,普通票总费用相

26、同,均比金卡划算;当15x45时,银卡消费更划算;当x45时,金卡,银卡的总费用相同,均比普通票划算;当x45时,金卡消费更划算【点睛】本题考查一次函数应用,重点掌握一次函数的基本性质熟练应用,能结合实际灵活运用是解题的关键23(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2解析:(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),

27、如图2,作DHF=45,利用AAS证明ADEHFD,再运用等腰直角三角形性质即可求出答案;将D(-1,n)代入y=x+6中,得D(-1,5),过D作DMx轴于M,作FNDM于N,如图3,利用AAS可证得FDNDEM,进而得出F(4,6),再根据DGF=DGO分类讨论即可【详解】解:(1)交轴于点,交轴于点,与关于轴对称,设直线为:,将、坐标代入得,解得,直线的函数解析式为:;(2)将点代入中,得:,解得:,如图2,作,在和中,又,和均为等腰直角三角形,是等腰直角三角形,将代入中,得:,则,过作轴于,作于,如图3,在和中,当点、三点共线时,如图3,设直线的解析式为,解得:,直线的解析式为,当时,

28、;如图4,连接DG2,FG2,过点D作DMOG2,DNFG2,DM=DN,又DO=DF,(HL),ODM=FDN,又ODN+FDN=90,ODM+ODN=90,即MDN=90,四边形DMG2N是正方形,OG2F=90,设,解得:,;当平分时,如图5,又,设与交于点,设直线解析式为,解得:,直线解析式为,联立方程组,解得:,;综上所述,符合条件的的坐标为,或或,【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形

29、结合思想是解题关键24(1)直线BE的解析式为;点P坐标为(,)或(,);(2)存在,点M坐标为(,)或(,)或(,)【解析】【分析】(1)先求得点E坐标为(0,1),利用待定系数法即可求解;过点P作P解析:(1)直线BE的解析式为;点P坐标为(,)或(,);(2)存在,点M坐标为(,)或(,)或(,)【解析】【分析】(1)先求得点E坐标为(0,1),利用待定系数法即可求解;过点P作PG轴交直线BD于点G,利用勾股定理及三角形面积公式求得点C坐标为(,0),利用待定系数法求得直线AC的解析式以及点D坐标,设点P坐标为(,),则点G坐标为(,),利用三角形面积公式即可求解;(2)分AM为对角线、

30、EM为对角线、FM为对角线三种情况讨论,求解即可【详解】解:(1)点A坐标为(0,4),点B坐标为(3,0),OA=4,AE=3OE,OE=1,点E坐标为(0,1),设直线BE的解析式为,解得,直线BE的解析式为;过点P作PG轴交直线BD于点G,点A坐标为(0,4),点B坐标为(3,0),OA=4,OB=3,AB=,ACAB,AOBC,由勾股定理得:,解得:OC=,点C坐标为(,0),设直线AC的解析式为,解得,直线AC的解析式为,解方程,得,点D坐标为(,),设点P坐标为(,),则点G坐标为(,),PG=,SBODSPDB,即,整理得解得:或;当时,;当时,;点P坐标为(,)或(,);(2)

31、存在,当AM为对角线时,四边形AEMF是菱形,AE=AF= ME=MF,则AEF=AFE,ABF+AFE=90,EBO+BEO=90,AEF=BEO,ABF=EBO,过点F作FH轴于点H,则AF= FH,点H与点M重合,BM=BA=5,则OM=2,点M坐标为(,);当EM为对角线时, 四边形AEFM是菱形,AE=EF= FM=AM,则EAF=AFE,ABF+AFE=90,BAE+EAF=90,ABF=BAE,BE=EA,设BE=EA=x,在RtBEO中,EO=4-x,BO=3,解得:,即BE=EA=EF=FM=,延长MF交轴于点I,则OEFI,即OE是BFI的中位线,FI=2EO=2(4-)=

32、,OI=OB=3,MI=点M坐标为(,);当FM为对角线时,四边形AFEM是菱形,MF是线段 AE的垂直平分线,AF=EF= EM=AM,MFBC,AFM=EFM,AFM=ACB,MFE=FBC,FBC=FCB,过点F作FJ轴于点J,BJ=JC,BC=,OJ=,即点F的横坐标为,点F的坐标为(,),根据对称性,点M坐标为(,);综上,点M坐标为(,)或(,)或(,)【点睛】本题考查了一次函数的图象和性质,等腰三角形的判定和性质,菱形的判定和性质,三角形中位线定理,勾股定理等,解题的关键是灵活运用所学知识解决问题25(1)见解析;(2),;(3);【分析】(1)利用直角三角形斜边中线的性质可得D

33、O=DA,推出AEO=60,进一步得出BCAE,COAB,可得结论;(2)先计算出OA=,推出PB=解析:(1)见解析;(2),;(3);【分析】(1)利用直角三角形斜边中线的性质可得DO=DA,推出AEO=60,进一步得出BCAE,COAB,可得结论;(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;(3)求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算【详解】(1)证明:RtOAB中,D为OB的中点,AD=OB,OD=BD=O

34、B,DO=DA,DAO=DOA=30,EOA=90,AEO=60,又OBC为等边三角形,BCO=AEO=60,BCAE,BAO=COA=90,COAB,四边形ABCE是平行四边形;(2)解:在RtAOB中,AOB=30,OB=8,AB=4,OA=,四边形ABCE是平行四边形,PB=PE,PC=PA,PB=,即;(3)C(0,4),设直线AC的解析式为y=kx+4,P(,0),0=k+4,解得,k=,y=x+4,APM=90,直线PM的解析式为y=x+m,P(,0),0=+m,解得,m=-3,直线PM的解析式为y=x-3,设M(x,x-3),AP=,(x-)2+(x-3)2=()2,化简得,x2-4x-4=0,解得,x1=,x2=(不合题意舍去),当x=时,y=()-3=,M(,),故答案为:(,);直线BC的解析式为:,联立,解得,【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服